
The Amazing World of Neural
Language Generation
Part II: Neural Network Modeling for Generation

Yangfeng Ji

November 20, 2020

Department of Computer Science

University of Virginia

Basic Architecture of Neural NLG Models

From a (very) high-level viewpoint, neural NLG model can be

formulated as with two fundamental components: encoder and
decoder:

Input x Encoder Decoder Text y

where

I Input: A sequence of words x = (G1 , · · · , G<), < words

I Output: A sequence of words y = (H1 , · · · , H=), = words

We will try to answer the following three questions with neural

network modeling strategies

I How to select contextual information?
I How to build better latent representations?
I How to incorporate structural information?

1

Basic Architecture of Neural NLG Models

From a (very) high-level viewpoint, neural NLG model can be

formulated as with two fundamental components: encoder and
decoder:

Input x Encoder Decoder Text y

where

I Input: A sequence of words x = (G1 , · · · , G<), < words

I Output: A sequence of words y = (H1 , · · · , H=), = words

We will try to answer the following three questions with neural

network modeling strategies

I How to select contextual information?
I How to build better latent representations?
I How to incorporate structural information?

1

Roadmap

This part of the tutorial will cover the three major neural network

modeling strategies for text generation

Encoder-Decoder
Framework

Contextual Information Latent Representation Structural Information

Attention Mechanism

Copying Mechanism

Memory Modules

Variational Autoen-
coders

Generative Adversarial
Networks

Disentangled Repre-
sentations

Pretrained Language
Models

Neural Templates

Syntactic

Semantic

2

Roadmap

This part of the tutorial will cover the three major neural network

modeling strategies for text generation

Encoder-Decoder
Framework

Contextual Information Latent Representation Structural Information

Attention Mechanism

Copying Mechanism

Memory Modules

Variational Autoen-
coders

Generative Adversarial
Networks

Disentangled Repre-
sentations

Pretrained Language
Models

Neural Templates

Syntactic

Semantic

2

Recurrent Neural Networks as Encoders/Decoders

The simple implementation of the encoder-decoder framework is to

realize each component with a recurrent neural network as illustrated

in the following

s1 s2 s3

G1 G2 G3

h1 h2 h3

H1 H2 H3

〈B〉 H1 H2

where each s·/h· is a hidden state of the encoder/decoder recurrent

neural network.

Simple extensions on the encoder side

I Bi-directional RNN

I Stacked LSTM

3

Recurrent Neural Networks as Encoders/Decoders

The simple implementation of the encoder-decoder framework is to

realize each component with a recurrent neural network as illustrated

in the following

s1 s2 s3

G1 G2 G3

h1 h2 h3

H1 H2 H3

〈B〉 H1 H2

where each s·/h· is a hidden state of the encoder/decoder recurrent

neural network.

Simple extensions on the encoder side

I Bi-directional RNN

I Stacked LSTM

3

Recurrent Neural Network Decoder

In general, an decoder can be implemented as an auto-regressive

model, with the hidden state computed as

hC = 5 (hC−1 , HC−1) (1)

hC−1
· · ·

HC−1

hC · · ·

HC

HC−1

For generation, the probability of the word HC is computed as

?(H) = softmax (]>hC) (2)

where]> ∈ ℝ�×+
is a learnable weight matrix for the output layer

Decoding algorithms will be discussed in the next part of the tutorial.

4

Recurrent Neural Network Decoder

In general, an decoder can be implemented as an auto-regressive

model, with the hidden state computed as

hC = 5 (hC−1 , HC−1) (1)

hC−1
· · ·

HC−1

hC · · ·

HC

HC−1

For generation, the probability of the word HC is computed as

?(H) = softmax (]>hC) (2)

where]> ∈ ℝ�×+
is a learnable weight matrix for the output layer

Decoding algorithms will be discussed in the next part of the tutorial.

4

Recurrent Neural Network Decoder

In general, an decoder can be implemented as an auto-regressive

model, with the hidden state computed as

hC = 5 (hC−1 , HC−1) (1)

hC−1
· · ·

HC−1

hC · · ·

HC

HC−1

For generation, the probability of the word HC is computed as

?(H) = softmax (]>hC) (2)

where]> ∈ ℝ�×+
is a learnable weight matrix for the output layer

Decoding algorithms will be discussed in the next part of the tutorial.

4

Contextual Information

Roadmap

Encoder-Decoder
Framework

Contextual Information Latent Representation Structural Information

Attention Mechanism

Copying Mechanism

Memory Modules

6

Attention Mechanism

Attention mechanism (Bahdanau et al., 2015) provides a way of

actively encoding context information from preceding text

x = (G1 , · · · , G<) via hidden states (s1 , . . . , s<)

s1 · · · s<

G1 G<

cC

C ,1 C ,<

hC−1 hC

HC−1

HC

Attention weights

C ,8 = 6(s8 , hC−1) ∈ (0, 1)

cC =
<∑
8=1

C ,8 · s8

I cC is a function of hC−1, which means it dynamically changes at

every time step of decoding

I cC enables the decoder to be more selective on using contextual

information

I Widely used in many text generation tasks: response generation,

story generation, and document summarization

7

Attention Mechanism

Attention mechanism (Bahdanau et al., 2015) provides a way of

actively encoding context information from preceding text

x = (G1 , · · · , G<) via hidden states (s1 , . . . , s<)

s1 · · · s<

G1 G<

cC

C ,1 C ,<

hC−1 hC

HC−1

HC

Attention weights

C ,8 = 6(s8 , hC−1) ∈ (0, 1)

cC =
<∑
8=1

C ,8 · s8

I cC is a function of hC−1, which means it dynamically changes at

every time step of decoding

I cC enables the decoder to be more selective on using contextual

information

I Widely used in many text generation tasks: response generation,

story generation, and document summarization

7

Attention Mechanism

Attention mechanism (Bahdanau et al., 2015) provides a way of

actively encoding context information from preceding text

x = (G1 , · · · , G<) via hidden states (s1 , . . . , s<)

s1 · · · s<

G1 G<

cC

C ,1 C ,<

hC−1 hC

HC−1

HC

Attention weights

C ,8 = 6(s8 , hC−1) ∈ (0, 1)

cC =
<∑
8=1

C ,8 · s8

I cC is a function of hC−1, which means it dynamically changes at

every time step of decoding

I cC enables the decoder to be more selective on using contextual

information

I Widely used in many text generation tasks: response generation,

story generation, and document summarization 7

Attention Mechanism in FFNs

Rush et al. (2015) use the attention mechanism in a feed-forward

neural network for abstractive sentence summarization, where the

neural network architecture is constructed as the following

Diagram (b) represents the attention-based encoder, which use the

input x and a fixed context window y2 = y8−2+1:8 to compute the

attention weights

" ∝ exp(x̃Vy′2) x̄8 =
8+&∑
@=8−&

x̃8/& enc(x , y2) = "T x̄ (3)

8

Attention Mechanism in FFNs

Rush et al. (2015) use the attention mechanism in a feed-forward

neural network for abstractive sentence summarization, where the

neural network architecture is constructed as the following

Diagram (b) represents the attention-based encoder, which use the

input x and a fixed context window y2 = y8−2+1:8 to compute the

attention weights

" ∝ exp(x̃Vy′2) x̄8 =
8+&∑
@=8−&

x̃8/& enc(x , y2) = "T x̄ (3)

8

Copying Mechanism: CopyNet

Gu et al. (2016) propose a model called CopyNet to directly copy a

phrases from input x to output y,

?(HC | hC) = ?6(HC | hC) + ?2(HC | hC) (4)

where ?6(HC | hC) is a probability distribution defined on Vand

?2(HC | hC) is a probability distribution defined only on the input x.

In other words, it defines a mixture model with equal mixture

coefficients.
9

Copying Mechanism: Pointer-Generator Networks

See et al. (2017) propose a similar idea to copy words from input x to

output y in text summarization. The probability of F ∈ Ybeing the

next word is

?(HC = F | ·) = �?6(HC = F | ·) + (1 − �)
∑
G8∈x

�(F = G8)C ,8 (5)

Among the many implementation differences with (Gu et al., 2016),

the work uses

I a soft gate � ∈ (0, 1) to
decide the probability of

generation instead of

copying

I the probability of copy a

word F is defined by the

attention weights

associated with it

10

Copying Mechanism: Pointer-Generator Networks

See et al. (2017) propose a similar idea to copy words from input x to

output y in text summarization. The probability of F ∈ Ybeing the

next word is

?(HC = F | ·) = �?6(HC = F | ·) + (1 − �)
∑
G8∈x

�(F = G8)C ,8 (5)

Among the many implementation differences with (Gu et al., 2016),

the work uses

I a soft gate � ∈ (0, 1) to
decide the probability of

generation instead of

copying

I the probability of copy a

word F is defined by the

attention weights

associated with it

10

Copying Mechanism: Pointer-Generator Networks

See et al. (2017) propose a similar idea to copy words from input x to

output y in text summarization. The probability of F ∈ Ybeing the

next word is

?(HC = F | ·) = �?6(HC = F | ·) + (1 − �)
∑
G8∈x

�(F = G8)C ,8 (5)

Among the many implementation differences with (Gu et al., 2016),

the work uses

I a soft gate � ∈ (0, 1) to
decide the probability of

generation instead of

copying

I the probability of copy a

word F is defined by the

attention weights

associated with it

10

Memory Modules

One example is proposed in (Clark et al., 2018) for entity-driven text

(story) generation, where each memory cell is associated with a

particular entity, to encode entity related information from context

hC−1
· · ·

attend

hC · · ·

EMNLP

attend

e��!
e�"#!%

e#���!
e···

where e· is a distributed representation of an entity

I Entity prediction ?(4 = EMNLP) ∝ exp(hT
C−1

]4eEMNLP +w 5 f (4)),
where f is the surface feature related to this entity (Ji et al., 2017).

I Dynamic entity updating e(new)

EMNLP ∝ �Ce
(new)

EMNLP + (1 − �C)hC , where

�C ∈ (0, 1) determines how much information should be encoded

from e(new)

EMNLP .

11

Memory Modules

One example is proposed in (Clark et al., 2018) for entity-driven text

(story) generation, where each memory cell is associated with a

particular entity, to encode entity related information from context

hC−1
· · ·

attend

hC · · ·

EMNLP

attend

e��!
e�"#!%

e#���!
e···

where e· is a distributed representation of an entity

I Entity prediction ?(4 = EMNLP) ∝ exp(hT
C−1

]4eEMNLP +w 5 f (4)),
where f is the surface feature related to this entity (Ji et al., 2017).

I Dynamic entity updating e(new)

EMNLP ∝ �Ce
(new)

EMNLP + (1 − �C)hC , where

�C ∈ (0, 1) determines how much information should be encoded

from e(new)

EMNLP .

11

Memory Modules

One example is proposed in (Clark et al., 2018) for entity-driven text

(story) generation, where each memory cell is associated with a

particular entity, to encode entity related information from context

hC−1
· · ·

attend

hC · · ·

EMNLP

attend

e��!
e�"#!%

e#���!
e···

where e· is a distributed representation of an entity

I Entity prediction ?(4 = EMNLP) ∝ exp(hT
C−1

]4eEMNLP +w 5 f (4)),
where f is the surface feature related to this entity (Ji et al., 2017).

I Dynamic entity updating e(new)

EMNLP ∝ �Ce
(new)

EMNLP + (1 − �C)hC , where

�C ∈ (0, 1) determines how much information should be encoded

from e(new)

EMNLP .

11

Latent Representation

Roadmap

Encoder-Decoder
Framework

Contextual Information Latent Representation Structural Information

Attention Mechanism

Copying Mechanism

Memory Modules

Variational Autoen-
coders

Generative Adversarial
Networks

Disentangled Repre-
sentations

Pretrained Language
Models

13

Variational Autoencoders in NLG

One-page summary of variational autoencoder (Kingma and Welling,

2014)

x

z

Inference Generation

A formulation of variational autoencoders for text generation

h = Encoder(x) (6)

z = h + & & ∼N(0, diag(22)) (7)

x̃ = Decoder(z) (8)

An impact of using VAE is that it (1) produces a robust encoder for

input x and (2) enriches the hidden space H.

14

Variational Autoencoders in NLG

One-page summary of variational autoencoder (Kingma and Welling,

2014)

x

z

Inference Generation

A formulation of variational autoencoders for text generation

h = Encoder(x) (6)

z = h + & & ∼N(0, diag(22)) (7)

x̃ = Decoder(z) (8)

An impact of using VAE is that it (1) produces a robust encoder for

input x and (2) enriches the hidden space H.

14

Variational Autoencoders in NLG

One-page summary of variational autoencoder (Kingma and Welling,

2014)

x

z

Inference Generation

A formulation of variational autoencoders for text generation

h = Encoder(x) (6)

z = h + & & ∼N(0, diag(22)) (7)

x̃ = Decoder(z) (8)

An impact of using VAE is that it (1) produces a robust encoder for

input x and (2) enriches the hidden space H.

14

Variational Seq2seq Models

An example application of variational autoencoder in language

generation

I The mean and variance of latent variable z is computed by the

linear transformations of the last hidden states from the RNN

encoder s<
I Other influential ideas from this work are KL cost annealing and

adversarial evaluation

(Bowman et al., 2016)

15

Variational Seq2seq Models

An example application of variational autoencoder in language

generation

I The mean and variance of latent variable z is computed by the

linear transformations of the last hidden states from the RNN

encoder s<

I Other influential ideas from this work are KL cost annealing and

adversarial evaluation

(Bowman et al., 2016)

15

Variational Seq2seq Models

An example application of variational autoencoder in language

generation

I The mean and variance of latent variable z is computed by the

linear transformations of the last hidden states from the RNN

encoder s<
I Other influential ideas from this work are KL cost annealing and

adversarial evaluation

(Bowman et al., 2016)

15

Conditional VAE

A simple formulation of conditional VAE is proposed by Sohn et al.

(2015), which initially was used in computer vision.

x

z

y

In text generation, consider x, y and z are input texts, output texts,

and latent representations of input texts

I Generation network: ?�(y | x , z), where z ∼ ?�(z | x)
I Inference network: @)(z | x , y)
I Example applications: in response generation, latent variable z

indicates whether the next utterance is a generic response (Shen

et al., 2017)

16

Generative Adversarial Networks

The basic pipeline of GAN is described in the following pipeline

Input x

Latent variable z Generator �

Discriminator � Prediction

x′

I One goal is to learn a generator � that can generate text x′ with

the same quality as x (in other words, to “fool” the discriminator)

I Potential applications are to adopt the framework as one

component in other task-specific generation tasks (e.g., style

transfer)

17

GANs for Generation

As a straightforward application of adversarial learning is to replace

the generator with a sequence-to-sequence model as we discussed

before, as proposed by Li et al. (2017)

Response y Discriminator �

DecoderEncoderContext x

Prediction

y′

I The decoder is to generate a response y′ based on input context x

I The discriminator is to predict whether a response is generated

by humans or the decoder

18

Learning Disentangled Representations

One way to utilize a discriminator is to learn disentangled

representations and make sure latent representations encoding the

expected attributes for generation.

An example of learning disentangled representations is proposed by

Hu et al. (2017), with

I Encoder

(z) = Encoder(x)
I Decoder

x̂ = Decoder(z, c)
I Discriminator

c = Dis(x̂)
where c encodes the attributes of a text (e.g., sentiment categories,

formality). Other work on learning disentangled representations

include (Bao et al., 2019; Cheng et al., 2020)

19

Learning Disentangled Representations

One way to utilize a discriminator is to learn disentangled

representations and make sure latent representations encoding the

expected attributes for generation.

An example of learning disentangled representations is proposed by

Hu et al. (2017), with

I Encoder

(z) = Encoder(x)
I Decoder

x̂ = Decoder(z, c)
I Discriminator

c = Dis(x̂)
where c encodes the attributes of a text (e.g., sentiment categories,

formality). Other work on learning disentangled representations

include (Bao et al., 2019; Cheng et al., 2020)

19

Transformers

Vaswani et al. (2017): “Attention mechanism . . . , allowing modeling of
dependencies without regard to their distance in the input or output
sequences.”

Recent applications of transformers simply use them as basic building

blocks, just like the way of using LSTM

20

Generative Pre-trained Transformers (GPT)

GPT (Radford et al., 2018) is trained simply by predicting the next

words with

h0 =]4xC−::C−1 +]?

h; = transformer_block(h;−1) ∀; ∈ [1, 12]
?(HC | h=) = softmax (]>h=)

(9)

where]4 and]? are the word and position embeddings.

21

Pre-trained Models as Teachers

Besides the generative models like GPT-2 and its variants, we can also

use BERT for text generation. One example from (Chen et al., 2020b)

is that BERT can be used as a teacher model to help train a

sequence-to-sequence models for better output probability

22

Structural Information

Roadmap

Encoder-Decoder
Framework

Contextual Information Latent Representation Structural Information

Attention Mechanism

Copying Mechanism

Memory Modules

Variational Autoen-
coders

Generative Adversarial
Networks

Disentangled Repre-
sentations

Pretrained Language
Models

Neural Templates

Syntactic

Semantic

24

Generation with Neural Templates

An extension of variational antoencoders is to incorporate sequential

information in latent variables. For example, Wiseman et al. (2018)

propose a semi-Markov model on the latent variable sequence

z = (I1 , . . . , I=) to capture dependency among adjacent words for

text-to-data generation.

A neural hidden semi-Markov model

decoder

I Transition distribution ?(IC+1 | IC , x)
I Length distribution ?(;C+1 | IC+1)
I Emission distribution

?(yC−;C+1:C | IC = :, ;C = ; , x)
25

Graph-to-Sequence Generation

An example of inputs is an AMR graph, where the task is to generate

a text with the same meaning as the input graph.

I The whole model is a layer-wise LSTM, within each layer LSTM

runs on the linearized graph, and between layers the hidden

states are updated with neighbor nodes from the previous layer

I The idea of linearizing an AMR graph (using depth-first search)

is proposed by Konstas et al. (2017)

I Other ideas of incorporating AMR graphs: Graph neural

network (Chen et al., 2020a)

26

Graph-to-Sequence Generation

An example of inputs is an AMR graph, where the task is to generate

a text with the same meaning as the input graph.

I The whole model is a layer-wise LSTM, within each layer LSTM

runs on the linearized graph, and between layers the hidden

states are updated with neighbor nodes from the previous layer

I The idea of linearizing an AMR graph (using depth-first search)

is proposed by Konstas et al. (2017)

I Other ideas of incorporating AMR graphs: Graph neural

network (Chen et al., 2020a)

26

Graph-to-Sequence Generation

An example of inputs is an AMR graph, where the task is to generate

a text with the same meaning as the input graph.

I The whole model is a layer-wise LSTM, within each layer LSTM

runs on the linearized graph, and between layers the hidden

states are updated with neighbor nodes from the previous layer

I The idea of linearizing an AMR graph (using depth-first search)

is proposed by Konstas et al. (2017)

I Other ideas of incorporating AMR graphs: Graph neural

network (Chen et al., 2020a)

26

Graph-to-Sequence Generation

An example of inputs is an AMR graph, where the task is to generate

a text with the same meaning as the input graph.

I The whole model is a layer-wise LSTM, within each layer LSTM

runs on the linearized graph, and between layers the hidden

states are updated with neighbor nodes from the previous layer

I The idea of linearizing an AMR graph (using depth-first search)

is proposed by Konstas et al. (2017)

I Other ideas of incorporating AMR graphs: Graph neural

network (Chen et al., 2020a)
26

Dialogue Generation with Semantic Exemplars

A straightforward application of GPT is the response generation

proposed by Gupta et al. (2020). The prediction is still done by

word-by-word prediction, where the input sequence and output

sequence are 1

x = (Dialogue context,Response frames,Response text)
y = (〈MASK〉,Response frames,Response text)

(10)

1A semantic frame example Perception: hear, say, see, smell, feel
27

Summary

Encoder-Decoder
Framework

Contextual Information Latent Representation Structural Information

Attention Mechanism

Copying Mechanism

Memory Modules

Variational Autoen-
coders

Generative Adversarial
Networks

Disentangled Repre-
sentations

Pretrained Language
Models

Neural Templates

Syntactic

Semantic

28

Summary

Encoder-Decoder
Framework

Contextual Information Latent Representation Structural Information

Attention Mechanism

Copying Mechanism

Memory Modules

Variational Autoen-
coders

Generative Adversarial
Networks

Disentangled Repre-
sentations

Pretrained Language
Models

Neural Templates

Syntactic

Semantic

28

Reference I

Bahdanau, D., Cho, K., and Bengio, Y. (2015). Neural Machine Translation by Jointly Learning to Align and Translate. In International
Conference on Learning Representations. arXiv: 1409.0473.

Bao, Y., Zhou, H., Huang, S., Li, L., Mou, L., Vechtomova, O., Dai, X.-y., and Chen, J. (2019). Generating Sentences from Disentangled

Syntactic and Semantic Spaces. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 6008–6019,
Florence, Italy. Association for Computational Linguistics.

Bowman, S. R., Vilnis, L., Vinyals, O., Dai, A., Jozefowicz, R., and Bengio, S. (2016). Generating Sentences from a Continuous Space. In

Proceedings of The 20th SIGNLL Conference on Computational Natural Language Learning, pages 10–21, Berlin, Germany. Association for

Computational Linguistics.

Chen, M., Tang, Q., Wiseman, S., and Gimpel, K. (2019). Controllable Paraphrase Generation with a Syntactic Exemplar. In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics, pages 5972–5984, Florence, Italy. Association for Computational

Linguistics.

Chen, Y., Wu, L., and Zaki, M. J. (2020a). Reinforcement Learning Based Graph-to-Sequence Model for Natural Question Generation.

arXiv:1908.04942 [cs]. arXiv: 1908.04942.
Chen, Y.-C., Gan, Z., Cheng, Y., Liu, J., and Liu, J. (2020b). Distilling Knowledge Learned in BERT for Text Generation. In Proceedings of the

58th Annual Meeting of the Association for Computational Linguistics, pages 7893–7905, Online. Association for Computational Linguistics.

Cheng, P., Min, M. R., Shen, D., Malon, C., Zhang, Y., Li, Y., and Carin, L. (2020). Improving Disentangled Text Representation Learning

with Information-Theoretic Guidance. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages
7530–7541, Online. Association for Computational Linguistics.

Clark, E., Ji, Y., and Smith, N. A. (2018). Neural Text Generation in Stories Using Entity Representations as Context. In Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
Papers), pages 2250–2260, New Orleans, Louisiana. Association for Computational Linguistics.

Gu, J., Lu, Z., Li, H., and Li, V. O. (2016). Incorporating Copying Mechanism in Sequence-to-Sequence Learning. In Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1631–1640, Berlin, Germany. Association for

Computational Linguistics.

Gupta, P., Bigham, J. P., Tsvetkov, Y., and Pavel, A. (2020). Controlling Dialogue Generation with Semantic Exemplars. arXiv:2008.09075 [cs].
arXiv: 2008.09075.

Hu, Z., Yang, Z., Liang, X., Salakhutdinov, R., and Xing, E. P. (2017). Toward Controlled Generation of Text. volume 70 of Proceedings of
Machine Learning Research, pages 1587–1596, International Convention Centre, Sydney, Australia. PMLR.

29

Reference II

Ji, Y., Tan, C., Martschat, S., Choi, Y., and Smith, N. A. (2017). Dynamic Entity Representations in Neural Language Models. In Proceedings of
the 2017 Conference on Empirical Methods in Natural Language Processing, pages 1830–1839, Copenhagen, Denmark. Association for

Computational Linguistics.

Kingma, D. P. and Welling, M. (2014). Auto-Encoding Variational Bayes. In ICLR. arXiv: 1312.6114.
Konstas, I., Iyer, S., Yatskar, M., Choi, Y., and Zettlemoyer, L. (2017). Neural AMR: Sequence-to-Sequence Models for Parsing and

Generation. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages
146–157, Vancouver, Canada. Association for Computational Linguistics.

Li, J., Monroe, W., Shi, T., Jean, S., Ritter, A., and Jurafsky, D. (2017). Adversarial Learning for Neural Dialogue Generation. In Proceedings of
the 2017 Conference on Empirical Methods in Natural Language Processing, pages 2157–2169, Copenhagen, Denmark. Association for

Computational Linguistics.

Radford, A., Narasimhan, K., Salimans, T., and Sutskever, I. (2018). Improving language understanding by generative pre-training.
Rush, A. M., Chopra, S., and Weston, J. (2015). A Neural Attention Model for Abstractive Sentence Summarization. In Proceedings of the 2015

Conference on Empirical Methods in Natural Language Processing, pages 379–389, Lisbon, Portugal. Association for Computational

Linguistics.

See, A., Liu, P. J., and Manning, C. D. (2017). Get To The Point: Summarization with Pointer-Generator Networks. In Proceedings of the 55th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1073–1083, Vancouver, Canada. Association

for Computational Linguistics.

Shen, X., Su, H., Li, Y., Li, W., Niu, S., Zhao, Y., Aizawa, A., and Long, G. (2017). A Conditional Variational Framework for Dialog

Generation. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages
504–509, Vancouver, Canada. Association for Computational Linguistics.

Sohn, K., Lee, H., and Yan, X. (2015). Learning Structured Output Representation using Deep Conditional Generative Models. In Advances
in neural information processing systems, pages 3483–3491.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin, I. (2017). Attention is All you Need.

In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., editors, Advances in Neural
Information Processing Systems 30, pages 5998–6008. Curran Associates, Inc.

Wiseman, S., Shieber, S., and Rush, A. (2018). Learning Neural Templates for Text Generation. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing, pages 3174–3187, Brussels, Belgium. Association for Computational Linguistics.

30

	Contextual Information
	Latent Representation
	Structural Information
	References

