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Basic Architecture of Neural NLG Models

From a (very) high-level viewpoint, neural NLG model can be

formulated as with two fundamental components: encoder and
decoder:

Input x Encoder Decoder Text y

where

I Input: A sequence of words x = (G1 , · · · , G<), < words

I Output: A sequence of words y = (H1 , · · · , H=), = words

We will try to answer the following three questions with neural

network modeling strategies

I How to select contextual information?
I How to build better latent representations?
I How to incorporate structural information?

1



Basic Architecture of Neural NLG Models

From a (very) high-level viewpoint, neural NLG model can be

formulated as with two fundamental components: encoder and
decoder:

Input x Encoder Decoder Text y

where

I Input: A sequence of words x = (G1 , · · · , G<), < words

I Output: A sequence of words y = (H1 , · · · , H=), = words

We will try to answer the following three questions with neural

network modeling strategies

I How to select contextual information?
I How to build better latent representations?
I How to incorporate structural information?

1



Roadmap

This part of the tutorial will cover the three major neural network

modeling strategies for text generation

Encoder-Decoder
Framework

Contextual Information Latent Representation Structural Information

Attention Mechanism

Copying Mechanism

Memory Modules

Variational Autoen-
coders

Generative Adversarial
Networks

Disentangled Repre-
sentations

Pretrained Language
Models

Neural Templates

Syntactic

Semantic

2



Roadmap

This part of the tutorial will cover the three major neural network

modeling strategies for text generation

Encoder-Decoder
Framework

Contextual Information Latent Representation Structural Information

Attention Mechanism

Copying Mechanism

Memory Modules

Variational Autoen-
coders

Generative Adversarial
Networks

Disentangled Repre-
sentations

Pretrained Language
Models

Neural Templates

Syntactic

Semantic

2



Recurrent Neural Networks as Encoders/Decoders

The simple implementation of the encoder-decoder framework is to

realize each component with a recurrent neural network as illustrated

in the following

s1 s2 s3

G1 G2 G3

h1 h2 h3

H1 H2 H3

〈B〉 H1 H2

where each s·/h· is a hidden state of the encoder/decoder recurrent

neural network.

Simple extensions on the encoder side

I Bi-directional RNN

I Stacked LSTM
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Recurrent Neural Network Decoder

In general, an decoder can be implemented as an auto-regressive

model, with the hidden state computed as

hC = 5 (hC−1 , HC−1) (1)

hC−1
· · ·

HC−1

hC · · ·

HC

HC−1

For generation, the probability of the word HC is computed as

?(H) = softmax (]>hC) (2)

where]> ∈ ℝ�×+
is a learnable weight matrix for the output layer

Decoding algorithms will be discussed in the next part of the tutorial.
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Attention Mechanism

Attention mechanism (Bahdanau et al., 2015) provides a way of

actively encoding context information from preceding text

x = (G1 , · · · , G<) via hidden states (s1 , . . . , s<)

s1 · · · s<

G1 G<

cC

C ,1 C ,<

hC−1 hC

HC−1

HC

Attention weights

C ,8 = 6(s8 , hC−1) ∈ (0, 1)

cC =
<∑
8=1

C ,8 · s8

I cC is a function of hC−1, which means it dynamically changes at

every time step of decoding

I cC enables the decoder to be more selective on using contextual

information

I Widely used in many text generation tasks: response generation,

story generation, and document summarization
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Attention Mechanism in FFNs

Rush et al. (2015) use the attention mechanism in a feed-forward

neural network for abstractive sentence summarization, where the

neural network architecture is constructed as the following

Diagram (b) represents the attention-based encoder, which use the

input x and a fixed context window y2 = y8−2+1:8 to compute the

attention weights

" ∝ exp(x̃Vy′2) x̄8 =
8+&∑
@=8−&

x̃8/& enc(x , y2) = "T x̄ (3)
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Copying Mechanism: CopyNet

Gu et al. (2016) propose a model called CopyNet to directly copy a

phrases from input x to output y,

?(HC | hC) = ?6(HC | hC) + ?2(HC | hC) (4)

where ?6(HC | hC) is a probability distribution defined on Vand

?2(HC | hC) is a probability distribution defined only on the input x.

In other words, it defines a mixture model with equal mixture

coefficients.
9



Copying Mechanism: Pointer-Generator Networks

See et al. (2017) propose a similar idea to copy words from input x to

output y in text summarization. The probability of F ∈ Ybeing the

next word is

?(HC = F | ·) = �?6(HC = F | ·) + (1 − �)
∑
G8∈x

�(F = G8)C ,8 (5)

Among the many implementation differences with (Gu et al., 2016),

the work uses

I a soft gate � ∈ (0, 1) to
decide the probability of

generation instead of

copying

I the probability of copy a

word F is defined by the

attention weights

associated with it
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Memory Modules

One example is proposed in (Clark et al., 2018) for entity-driven text

(story) generation, where each memory cell is associated with a

particular entity, to encode entity related information from context

hC−1
· · ·

attend

hC · · ·

EMNLP

attend

e��!
e�"#!%

e#���!
e···

where e· is a distributed representation of an entity

I Entity prediction ?(4 = EMNLP) ∝ exp(hT
C−1

]4eEMNLP +w 5 f (4)),
where f is the surface feature related to this entity (Ji et al., 2017).

I Dynamic entity updating e(new)

EMNLP ∝ �Ce
(new)

EMNLP + (1 − �C)hC , where

�C ∈ (0, 1) determines how much information should be encoded

from e(new)

EMNLP .
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Variational Autoencoders in NLG

One-page summary of variational autoencoder (Kingma and Welling,

2014)

x

z

Inference Generation

A formulation of variational autoencoders for text generation

h = Encoder(x) (6)

z = h + & & ∼N(0, diag(22)) (7)

x̃ = Decoder(z) (8)

An impact of using VAE is that it (1) produces a robust encoder for

input x and (2) enriches the hidden space H.

14
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Variational Seq2seq Models

An example application of variational autoencoder in language

generation

I The mean and variance of latent variable z is computed by the

linear transformations of the last hidden states from the RNN

encoder s<
I Other influential ideas from this work are KL cost annealing and

adversarial evaluation

(Bowman et al., 2016)
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Conditional VAE

A simple formulation of conditional VAE is proposed by Sohn et al.

(2015), which initially was used in computer vision.

x

z

y

In text generation, consider x, y and z are input texts, output texts,

and latent representations of input texts

I Generation network: ?�(y | x , z), where z ∼ ?�(z | x)
I Inference network: @)(z | x , y)
I Example applications: in response generation, latent variable z

indicates whether the next utterance is a generic response (Shen

et al., 2017)
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Generative Adversarial Networks

The basic pipeline of GAN is described in the following pipeline

Input x

Latent variable z Generator �

Discriminator � Prediction

x′

I One goal is to learn a generator � that can generate text x′ with

the same quality as x (in other words, to “fool” the discriminator)

I Potential applications are to adopt the framework as one

component in other task-specific generation tasks (e.g., style

transfer)

17



GANs for Generation

As a straightforward application of adversarial learning is to replace

the generator with a sequence-to-sequence model as we discussed

before, as proposed by Li et al. (2017)

Response y Discriminator �

DecoderEncoderContext x

Prediction

y′

I The decoder is to generate a response y′ based on input context x

I The discriminator is to predict whether a response is generated

by humans or the decoder

18



Learning Disentangled Representations

One way to utilize a discriminator is to learn disentangled

representations and make sure latent representations encoding the

expected attributes for generation.

An example of learning disentangled representations is proposed by

Hu et al. (2017), with

I Encoder

(z) = Encoder(x)
I Decoder

x̂ = Decoder(z, c)
I Discriminator

c = Dis(x̂)
where c encodes the attributes of a text (e.g., sentiment categories,

formality). Other work on learning disentangled representations

include (Bao et al., 2019; Cheng et al., 2020)

19



Learning Disentangled Representations

One way to utilize a discriminator is to learn disentangled

representations and make sure latent representations encoding the

expected attributes for generation.

An example of learning disentangled representations is proposed by

Hu et al. (2017), with

I Encoder

(z) = Encoder(x)
I Decoder

x̂ = Decoder(z, c)
I Discriminator

c = Dis(x̂)
where c encodes the attributes of a text (e.g., sentiment categories,

formality). Other work on learning disentangled representations

include (Bao et al., 2019; Cheng et al., 2020)

19



Transformers

Vaswani et al. (2017): “Attention mechanism . . . , allowing modeling of
dependencies without regard to their distance in the input or output
sequences.”

Recent applications of transformers simply use them as basic building

blocks, just like the way of using LSTM

20



Generative Pre-trained Transformers (GPT)

GPT (Radford et al., 2018) is trained simply by predicting the next

words with

h0 = ]4xC−::C−1 +]?

h; = transformer_block(h;−1) ∀; ∈ [1, 12]
?(HC | h=) = softmax (]>h=)

(9)

where]4 and]? are the word and position embeddings.

21



Pre-trained Models as Teachers

Besides the generative models like GPT-2 and its variants, we can also

use BERT for text generation. One example from (Chen et al., 2020b)

is that BERT can be used as a teacher model to help train a

sequence-to-sequence models for better output probability

22



Structural Information



Roadmap

Encoder-Decoder
Framework

Contextual Information Latent Representation Structural Information

Attention Mechanism

Copying Mechanism

Memory Modules

Variational Autoen-
coders

Generative Adversarial
Networks

Disentangled Repre-
sentations

Pretrained Language
Models

Neural Templates

Syntactic

Semantic

24



Generation with Neural Templates

An extension of variational antoencoders is to incorporate sequential

information in latent variables. For example, Wiseman et al. (2018)

propose a semi-Markov model on the latent variable sequence

z = (I1 , . . . , I=) to capture dependency among adjacent words for

text-to-data generation.

A neural hidden semi-Markov model

decoder

I Transition distribution ?(IC+1 | IC , x)
I Length distribution ?(;C+1 | IC+1)
I Emission distribution

?(yC−;C+1:C | IC = :, ;C = ; , x)
25



Graph-to-Sequence Generation

An example of inputs is an AMR graph, where the task is to generate

a text with the same meaning as the input graph.

I The whole model is a layer-wise LSTM, within each layer LSTM

runs on the linearized graph, and between layers the hidden

states are updated with neighbor nodes from the previous layer

I The idea of linearizing an AMR graph (using depth-first search)

is proposed by Konstas et al. (2017)

I Other ideas of incorporating AMR graphs: Graph neural

network (Chen et al., 2020a)
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Dialogue Generation with Semantic Exemplars

A straightforward application of GPT is the response generation

proposed by Gupta et al. (2020). The prediction is still done by

word-by-word prediction, where the input sequence and output

sequence are 1

x = (Dialogue context,Response frames,Response text)
y = (〈MASK〉,Response frames,Response text)

(10)

1A semantic frame example Perception: hear, say, see, smell, feel
27
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