
Decoding from Neural  
Text Generation Models

Antoine Bosselut



Generation Model Basics
1. At each time step, model computes a score  for each token in our 

vocabulary, 
on

wn ∈ V
On = f({y}<t)  is your modelf( . )



1. At each time step, model computes a score  for each token in our 
vocabulary,  

2. Compute a probability distribution over these scores (usually softmax)

on
wn ∈ V

On = f({y}<t)

P(yt = wn |{y}<t) =
eon

∑M
m=1 eom

 is your modelf( . )

 is your distribution 
over tokens

P( . )

Generation Model Basics



Generation Model Basics
1. At each time step, model computes a score  for each token in our 

vocabulary,  

2. Compute a probability distribution over these scores (usually softmax) 

3. Define a function to select a token from this distribution

on
wn ∈ V

̂yt = g(P(yt |{y}<t))

 is your modelf( . )

 is your decoding 
algorithm

g( . )

 is your distribution 
over tokens

P( . )

On = f({y}<t)

P(yt = wn |{y}<t) =
eon

∑M
m=1 eom



Simplest approach: Argmax Decoding

•  = select the token with the highest probability:g

̂yt = argmax P(yt = w |{y}<t)
w ∈ V
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Simplest approach: Argmax Decoding
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̂yt = argmax P(yt = w |{y}<t)
w ∈ V

Select highest 
scoring token
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Maybe we need more options: Beam Search

•  = cache b paths for two stepsg

He wanted to  
go to the 

restroom and

Model
He wanted to  

go to the 
grocery store

Model

,

.
and

with
at

store

stores
and

shop
.

Repeat!



Does this penalize longer sequences?

s(Y) =
T

∑
t=1

log P(yt |{y}<t)

Shorter sequences will score better!



Does this penalize longer sequences?
• Solution: Normalize by token length of sequence 

• Solution: Normalize by token length relative to reference sequence

s(Y) =
1

|Y |

|Y|

∑
t=1

log P(yt |{y}<t)

s(Y) =
1

lp(Y)

|Y|

∑
t=1

log P(yt |{y}<t) lp(Y) =
(5 + |Y | )α

(5 + 1)α

Wu et. al., 2016



Beam search gets repetitive and repetitive

The study, published in the Proceedings of the  
National Academy of Sciences of the United States of  
America (PNAS), was conducted by researchers from the  
Universidad Nacional Autónoma de México (UNAM) 
and the Universidad Nacional Autónoma de México  
(UNAM/Universidad Nacional Autónoma de México/ 
Universidad Nacional Autónoma de México/ 
Universidad Nacional Autónoma de México/ 
Universidad Nacional Autónoma de México… 

Context: 

Continuation:

In a shocking finding, scientist discovered a herd 
of unicorns living in a remote, previously 
unexplored valley, in the Andes Mountains. Even 
more surprising to the researchers was the fact 
that the unicorns spoke perfect English.

Holtzman et. al., ICLR  2020
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Context: 

Continuation:

In a shocking finding, scientist discovered a herd 
of unicorns living in a remote, previously 
unexplored valley, in the Andes Mountains. Even 
more surprising to the researchers was the fact 
that the unicorns spoke perfect English.

Holtzman et. al., ICLR  2020

Repetition is a big problem  
in text generation!



Why does this happen?

Holtzman et. al., ICLR  2020
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Artifact of Maximum Likelihood Training



Holtzman et. al., ICLR  2020

Artifact of Maximum Likelihood Training

Negative loglikelihood 
decreases over time!



Beam search gets repetitive and repetitive

Holtzman et. al., ICLR  2020

Worse for transformer LMs



Beam search gets repetitive and repetitive

Holtzman et. al., ICLR  2020

Longer it goes, the worse it gets.



How can we reduce repetition?

• Don’t repeat n-grams (Hacky, but works!)  

• Minimize additional loss term for minimizing hidden state similarity (LSTMs)  
 
 

(Celikyilmaz et al., NAACL 2018, Paulus et al., ICLR 2018)

̂yt = g(log P(yt |{y}<t)−s(ht, ht−m))
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Time to get random: Sampling

̂yt ∼ P(yt = w |{y}<t)

He wanted to go to the Decoder

restroom

airport
pub
gym
bathroom
game
beach
hospital
doctor

store
grocery

•  = sample a token from the distribution of tokensg

Randomly 
sample token 
according to 
distribution 
from  P( . )



• Too much randomness: distribution has too much entropy 

• Solution: Make the distribution more “peaky” with temperature scaling

Whoa, too random: Temperature Scaling
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Whoa, too random: Temperature Scaling

• Too much randomness: distribution has too much entropy 

• Solution: Make the distribution more “peaky” with temperature scaling

P(yt |{y}<t) =
eon / τ

∑M
m=1 eom / τ

τ > 1

τ < 1

“flatter” 
distribution

“peakier” 
distribution



Maybe we need fewer options: Top-k sampling

• The entire distribution over tokens is not needed at every step 

• Many token choices should have no chance of being selected

(Holtzman et. al., ACL 2018; Fan et al., ACL 2018)



Maybe we need fewer options: Top-k sampling

• The entire distribution over tokens is not needed at every step 

• Many token choices should have no chance of being selected 

• Only sample from the top k tokens in the distribution

̂yt ∼ P * (yt = w |{y}<t)

He wanted to go to the Decoder

restroom

airport
pub
gym
bathroom
game
beach
hospital
doctor

store
grocery

Randomly sample 
token from top k 

highest probability 
tokens in  P( . )

(Holtzman et. al., ACL 2018; Fan et al., ACL 2018)



Issues with top-k sampling

Top-k can cut-off too quickly Top-k can cut-off too slowly

(Holtzman et. al., ICLR  2020)



I don’t know how many options I need: Top-p sampling

• Also known as nucleus sampling 

• Sample from subset of vocabulary where probability mass is concentrated

P1(yt |{y}<t) P2(yt |{y}<t) P3(yt |{y}<t)

(Holtzman et. al., ICLR  2020)
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P1(yt |{y}<t) P2(yt |{y}<t) P3(yt |{y}<t)

I don’t know how many options I need: Top-p sampling

• Also known as nucleus sampling: 

• Sample from subset of vocabulary where probability mass is concentrated 

• Probability mass has a dynamically changing nucleus

P*1 (yt |{y}<t) P*2 (yt |{y}<t) P*3 (yt |{y}<t)

(Holtzman et. al., ICLR  2020)*nuclei not to scale

Only sample from the 
nucleus of the distribution



This all sounds a bit risky
• What if my sequence just isn’t very good?  

1. Make your word-level distributions more robust  
 

2. Optimize other sequence-level scores



Optimize other sequence-level scores: Re-ranking

• What if my sequence just isn’t very good? 

• Sample a bunch of sequences 

• Define a score to approximate the quality of your sequence.  

• Simplest is to just use perplexity!
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• What if my sequence just isn’t very good? 

• Sample a bunch of sequences 

• Define a score to approximate the quality of your sequence.  

• Simplest is to just use perplexity! 

• However, re-rankers can be used to score a variety of properties: style 
(Holtzman et al., 2018), discourse (Gabriel et al., 2019), entailment/factuality 
(Goyal et al., 2020), logical consistency (Lu et al., 2020), and many more…

Optimize other sequence-level scores: Re-ranking

Change your distribution  
at inference time!



kNN Language Models
• Don’t just rely on your trained model to generate a distribution over 

tokens 

• Use knowledge of similar contexts from another corpus

Obama was senator for
Barack is married to
Obama was born in

…
Obama is a native of
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Hawaii
…
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Targets Representations

4
100
5
…
3
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Hawaii

Normalization
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Hawaii

3
4
5

0.8
0.2

Aggregation

Hawaii
Illinois

Obama’s birthplace is

Test Context

?

Target Representation
0.6
0.2
…

Interpolation

Hawaii
Illinois

…

0.2
0.2
…

Classification

Hawaii
Illinois

…

…

(Khandelwal et. al., ICLR  2020)
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context in DB and current sequence
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kNN Language Models
• Don’t just rely on your trained model to generate a distribution over 
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Interpolate distribution from nearest neighbor 
search with model distribution



Plug and Play Language Models!
• What if I want to encourage a tough to formalize behavior at inference 

time?
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(Dathathri et al., ICLR 2020)
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Define an attribute model that scores the generated 
sequence. Each generated token must try to increase the 

score given to the sequence by the attribute model
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Backpropagate loss with respect to 
attribute score
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Update internal 
activations of language 

model based on  
 these gradients
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Update distribution based 
on new activations



Y

Ray hung a tire on a 
rope to make his 
daughter a swing.

Ray ran to his 
daughter to make 
sure she was okay.

x1 x2 xNX
…

X

Z

…

Ray ran [S]

…

Backpropagationỹb
1 ỹb

2 ỹb
N

ỹNỹ2ỹ1 …

…
ỹ f

1
ỹ f

2 ỹ f
N

Y Output:  She hit the rope and the tire fell on top of her.

LM

…

L(X, Ỹ , Z) := −
∑NZ

n=1
logPLM(zn|X, Ỹ , Z1:n−1)

Future constraints described 
by natural language

Inference time 
optimization with 
respect to future 

constraints

ỹN Ray …ran okay

…to

(Qin et. al., EMNLP 2020)

DELO
REA

N



Takeaways

• Decoding is a challenging problem in natural language generation 

• Human language distribution is noisy and doesn’t reflect simple properties 
(i.e., maximization) 

• Decoding algorithms can allow us to interject inductive biases that 
encourage properties of coherent NLG 

• A lot more work to be done!
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1. At each time step, model computes a score  for each token in our 
vocabulary,  

2. Compute a probability distribution over these scores (usually softmax) 

 

3. Define a loss function to select a token from this distribution

on
wn ∈ V

On = f({y}<t)

P(yt = wn |{y}<t) =
eon

∑M
m=1 eom

 is your modelf( . )

 is your distribution 
over tokens

P( . )

Generation Model Basics
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Maximizing Likelihood



Allen

•Trained to generate the next word given a set of preceding words

y*0

sailed

y*1

Maximizing Likelihood

Text Generation Model



across

Allen sailed

•Trained to generate the next word given a set of preceding words

y*0 y*1

y*2
sailed

y*1

Maximizing Likelihood

Text Generation Model



sailed across oceans

Allen sailed across

•Trained to generate the next word given a set of preceding words

y*0 y*1 y*2

y*1 y*2 y*3

Maximizing Likelihood

Text Generation Model



sailed across oceans in

Allen sailed across oceans

•Trained to generate the next word given a set of preceding words

y*0 y*1 y*2 y*3

y*1 y*2 y*3 y*4

Maximizing Likelihood

Text Generation Model



sailed across oceans in …

Allen sailed across oceans …

•Trained to generate the next word given a set of preceding words

y*0 y*1 y*2 y*3

y*1 y*2 y*3 y*4

Maximizing Likelihood

Text Generation Model



sailed across oceans in bought…

HeAllen sailed across oceans …

•Trained to generate the next word given a set of preceding words

y*0 y*1 y*2 y*3 y*T−4

y*1 y*2 y*3 y*T−3y*4

Maximizing Likelihood

Text Generation Model



sailed across oceans in bought a…

boughtHeAllen sailed across oceans …

•Trained to generate the next word given a set of preceding words

y*0 y*1 y*2 y*3 y*T−4 y*T−3

y*1 y*2 y*3 y*T−3 y*T−2y*4

Maximizing Likelihood

Text Generation Model



boatsailed across oceans in bought a…

aboughtHeAllen sailed across oceans …

•Trained to generate the next word given a set of preceding words

y*0 y*1 y*2 y*3 y*T−4 y*T−3 y*T−2

y*1 y*2 y*3 y*T−3 y*T−2 y*T−1y*4

Maximizing Likelihood

Text Generation Model



<END>boatsailed across oceans in bought a…

boataboughtHeAllen sailed across oceans …

•Trained to generate the next word given a set of preceding words

y*0 y*1 y*2 y*3 y*T−4 y*T−3 y*T−2 y*T−1

y*1 y*2 y*3 y*T−3 y*T−2 y*T−1 y*Ty*4

Maximizing Likelihood

Text Generation Model



Text Generation Model

ℒ = −
T

∑
t=1

log P(y*t |{y*}<t)

y*0 y*1 y*2 y*3 y*T−4 y*T−3 y*T−2 y*T−1

y*1 y*2 y*3 y*T−3 y*T−2 y*T−1 y*Ty*4

•Trained to generate the next word given a set of preceding words

Maximizing Likelihood



The study, published in the Proceedings of the  
National Academy of Sciences of the United States of  
America (PNAS), was conducted by researchers from the  
Universidad Nacional Autónoma de México (UNAM) 
and the Universidad Nacional Autónoma de México  
(UNAM/Universidad Nacional Autónoma de México/ 
Universidad Nacional Autónoma de México/ 
Universidad Nacional Autónoma de México/ 
Universidad Nacional Autónoma de México… 

Context: 

Continuation:

In a shocking finding, scientist discovered a herd 
of unicorns living in a remote, previously 
unexplored valley, in the Andes Mountains. Even 
more surprising to the researchers was the fact 
that the unicorns spoke perfect English.

Holtzman et. al., ICLR  2020

Issue #1: MLE discourages diversity
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Issue #1: MLE discourages diversity



Alternatives: Unlikelihood Training
• Sequence-level Unlikelihood Training 

• Given a set of undesired tokens  , lower their likelihood in context𝒞

Welleck et. al., ICLR  2020

ℒt
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∑
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log(1 − P(yneg |{y*}<t))ℒt
MLE = − log P(y*t |{y*}<t)
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ℒt
UL = −

T

∑
yneg∈𝒞

log(1 − P(yneg |{y*}<t))ℒt
MLE = − log P(y*t |{y*}<t)

Typical Negative 
Loglikehood objective

Unlikelihood objective 
lowers the probability of 

certain tokens



Alternatives: Unlikelihood Training
• Sequence-level Unlikelihood Training 

• Given a set of undesired tokens  , lower their likelihood in context𝒞

Welleck et. al., ICLR  2020
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Combine them for full 
unlikelihood training



Alternatives: Unlikelihood Training
• Sequence-level Unlikelihood Training 

• Given a set of undesired tokens  , lower their likelihood in context𝒞
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Alternatives: F  Softmax 

• Avoid likelihood issues by 
factorizing the softmax 

• Initialize C frequency 
classes 

• Distribute vocabulary into 
classes so that token 
frequency uniformly 
distributed across and 
between classes

2

Choi et. al., EMNLP  2020



Alternatives: F  Softmax 

• Learn  to select both frequency class 
and vocabulary token during training

2

P(yt = wn |{y}<t) =
eUnh

∑M
m=1 eUmh

P(yt = wn |{y}<t) = ( eVf h

∑C
c=1 eVch )( eUnh

∑Mf
m=1 eUmh )



Issue #2: Exposure Bias
• During training, we condition on gold context tokens that are real human-

generated text 
 
 

• During inference, we decode from distributions conditioned on previously 
generated tokens

ℒMLE = − log P(y*t |{y*}<t)

ℒdec = − log P( ̂yt |{ ̂y}<t)
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Issue #2: Exposure Bias
• During training, we condition on gold context tokens that are real human-

generated text 
 
 

• During inference, we decode from distributions conditioned on previously 
generated tokens

ℒMLE = − log P(y*t |{y*}<t)

ℒdec = − log P( ̂yt |{ ̂y}<t)



Reinforcement Learning

• Cast a text generation model as a MDP 

- State is denoted by a preceding context 

- Actions are the words you can generate 

- Policy is the text generation model 

- Rewards are provided by an external source



Text Generation Model

y*0 y*1 y*2 y*3

̂yT−3 ̂yT−2 ̂yT−1 ̂yT

•Trained to generate the next word given a set of preceding words

REINFORCE

ℒRL = −
T

∑
t=T−3

r( ̂yt)log P( ̂yt |{ ̂y}<t; {y*})

̂yT−3 ̂yT−2 ̂yT−1START



Reward Estimation
• How do we define a reward function? 

• BLEU (machine translation; Ranzato et al., ICLR 2016; Wu et al., 2016) 

• ROUGE (summarization; Paulus et al., ICLR 2018; Celikyilmaz et al., NAACL 2018) 

• CIDEr (image captioning; Rennie et al., CVPR 2017) 

• SPIDEr (image captioning; Liu et al., ICCV 2017)



Reward Estimation
• How do we define a reward function? 

• BLEU (machine translation; Ranzato et al., ICLR 2016; Wu et al., 2016) 

• ROUGE (summarization; Paulus et al., ICLR 2018; Celikyilmaz et al., NAACL 2020) 

• CIDEr (image captioning; Rennie et al., CVPR 2017) 

• SPIDEr (image captioning; Liu et al., ICCV 2017)

Optimizing for the task vs. Gaming the reward



What behaviors can we tie to rewards?
• Cross-modal consistency (Ren et al., CVPR 2017) 

• Simplicity (Zhang and Lapata, EMNLP 2017) 

• Temporal consistency (Bosselut et al., NAACL 2018) 

• Politeness (Tan et al., TACL 2018) 

• Paraphrasing (Li et al., EMNLP 2018) 

• Sentiment (Gong et al., NAACL 2019) 

• Formality (Gong et al., NAACL 2019)



Implementation Thoughts

• Credit Assignment 

• Set appropriate baseline 

• Mix with MLE 

ℒ = ℒMLE + αℒRL

ℒrl = − ∑ (r( ̂yt) − b)log P( ̂yt |{ ̂y}<t; {y*})

r( ̂yt) r( ̂Y)vs.
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What if you don’t know what to use as reward?

• Adversarial Learning! 

• Use an adversarially-learned scoring function to provide rewards 

• Still often uses REINFORCE 

• Dialogue systems (Li et al., EMNLP 2017), Visual storytelling (Wang et al., 
ACL 2018)



Human-in-the-loop Learning
1 Collect human feedback

“j is better than k” “j is better than k”

A Reddit post is 
sampled from 
the Reddit 
TL;DR dataset.

Various policies 
are used to 
sample a set of 
summaries.

Two summaries 
are selected for 
evaluation.

A human judges 
which is a better 
summary of the 
post.

2 Train reward model

One post with 
two summaries 
judged by a 
human are fed 
to the reward 
model.

The reward 
model 
calculates a 
reward r for 
each summary.

The loss is 
calculated based 
on the rewards 
and human label, 
and is used to 
update the 
reward model.

3 Train policy with PPO

A new post is 
sampled from the 
dataset.

The reward 
model calculates 
a reward for the 
summary.

The reward is 
used to update 
the policy via 
PPO.

r r

r

π

rj

loss = log(σ(rj - rk ))

rk

The policy π 
generates a 
summary for the 
post.

r

j

j

k

k

(Stiennon et al., NeurIPS 2020)



Takeaways
• Maximum likelihood estimation is still the premier algorithm for training text 

generation models 

• Diversity is an issue with MLE, so new approaches focus on mitigating the 
effects of common words 

• Exposure bias causes text generation models to lose coherence easily, so 
learning from its own samples is a promising way forward 

• Reinforcement learning allows models to learn tough to quantify behaviors 

• Much more!
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