Decoding from Neural
Text Generation Models

Antoine Bosselut

% NN

Stanford Stanford |INLP

University

=Pl

Generation Model Basics

1. At each time step, model computes a score o, for each token in our

vocabulary, w, € V
0,=/(y}<)

Generation Model Basics

1. At each time step, model computes a score o, for each token in our

vocabulary, w, € V
0,=/(y}<)

2. Compute a probability distribution over these scores (usually softmax)

0
is your distribution _ _ €
(yt R Wnl {y}<t) oyM
2 €7

m=1

Generation Model Basics

1. At each time step, model computes a score o, for each token in our

vocabulary, w, € V
0,=/(y}<)

2. Compute a probability distribution over these scores (usually softmax)

0
is your distribution _ _ €
(yt R Wnl {y}<t) oyM
2 €7

m=1

3. Detine a function to select a token from this distribution

=P)

Simplest approach: Argmax Decoding

® o = select the token with the highest probability:

y,=argmax (y,=w|{y}.,)

weV

. restroom
grocery
store

— airport

— pub

He wanted to go to the —— p— gym

- bathroom

- game

: beach
hospital

doctor

Simplest approach: Argmax Decoding

® o = select the token with the highest probability: Select highest

scoring token

y,=argmax (y,=w|{y}.,)

wevV

grocery
store
— airport
Bl < 7 @
He wanted to go to the —— Model — gym
- bathroom
- game
: beach
hospital

doctor

Maybe we need more options

® ¢ = cache b paths for two steps

He wanted to
go to the

_>

meassssssm restroom

grocery
store
airport
pub

gym
bathroom
game
beach
hospital
doctor

: Beam Search

Maybe we need more options: Beam Search

It b =2, select

® ¢ = cache b paths for two steps top two tokens

restroom
grocery

H
go to the

Maybe we need more options: Beam Search

Use them both as inputs to

® g = cache b paths for two steps the decoder at next step

He wanted to
go to the

Maybe we need more options: Beam Search

Yield separate distribution

for both input tokens

® ¢ = cache b paths for two steps

_ ')
s and
messssss restroom — \VileYe =) __ .
p— with
] at

H ted t
go to the

n
~+
O
q
®

and
stores
shop

— grocery — Model

Maybe we need more options: Beam Search

Select top b sequence continuations

across both distributions
® ¢ = cache b paths for two steps

He wanted to
go to the

Maybe we need more options: Beam Search

Repeat!
® ¢ = cache b paths for two steps

N
I

I *)
— with
— at

He wanted to
go tothe ——
restroom and

n
~+
O
1
®

He wanted to

- and
-
go tothe —— - stores
grocery store - shop
H

Does this penalize longer sequences?

A
s(Y) = Z log P()’zl {y}<t)
=1

Shorter sequences will score better!

Does this penalize longer sequences?

® Solution: Normalize by token length of sequence
Y|

S(Y) = —Z log P(y,1 {y})

pd

® Solution: Normalize by token length relative to reference sequence

Y] S+ |}
S()) I (7) § , Og yt‘ {Y}<t> l]i() (5 |])a

Wu et. al., 2016

Beam search gets repetitive and repetitive

Context: In a shocking finding, scientist discovered a herd
of unicorns living in a remote, previously

unexplored valley, in the Andes Mountains. Even

more surprising to the researchers was the fact
that the unicorns spoke pertect English.

o e . The study, published in the Proceedings of the
Continuation: National Academy of Sciences of the United States of
America (PNAS), was conducted by researchers from the
Universidad Nacional Autonoma de México (UNAM)
and the Universidad Nacional Autéonoma de México
(UNAM/Universidad Nacional Auténoma de México/
Universidad Nacional Auténoma de México/
Universidad Nacional Auténoma de México/

Universidad Nacional Autonoma de México...
Holtzman et. al., ICLR 2020

Beam search gets repetitive and repetitive

Context: In a shocking finding, scientist discovered a herd
of unicorns living in a remote, previously

inexplored vallev. in the Andes Mountair =18

Repetition is a big problem
Continuatic in text generation!

Jgniversidad Nacional Autonoma de Mexico (UNAM)
and the Universidad Nacional Autéonoma de México
(UNAM/Universidad Nacional Auténoma de México/
Universidad Nacional Auténoma de México/
Universidad Nacional Auténoma de México/

Universidad Nacional Autonoma de México...
Holtzman et. al., ICLR 2020

Negative Loglikelihood

O O = N W & OO0 N OO W O -

O = N W & OO N @

Why does this happen?

| don't know.
&
L L ®
L 4
® ®
A
0:do 1:n't 2:Know 3.
Timestep

-®- openai -@- Istm

Holtzman et. al., ICLR 2020

Artitfact of Maximum Likelihood Training

| don't know. | don't know. | don't know. | don't know. | don't know. | don't know. | don't know.
21
zo s @
17 6.4
16 6.%
15 2-§
g 3 23 -
o 13 2 .3
= £ 4.
% 12 g_" 39 & @
8’ 11 83 4.2
-1 10 - 3.g
(o)) @
- z 31 e -’101...
)) 3
> 8 > 5%
2 7 2 38 ool o
6 53
° . 3
4 1.6
3 - ® ' ®]3 L@
: L ¢ §§ -
1 L : -9~
0 P 0.2 @ . . x :t
0:do 1:n't 2:Know 3. 0:dd:@knowB:. 4:i5:d&:7'Kno8:. 9:10:dd1@KnA8:.1415:d®ITKNAE:.1920: @122 KN@8:.2425: @E2T Kn@8:.
Timestep Timestep
-®- openai -@- Istm -®- openai -@- Istm

Holtzman et. al., ICLR 2020

Artitfact of Maximum Likelihood Training

| don't know. | don't know. | don't know. | don't know. | don't know. | don't know. | don't know.
21
20 7'8 ° ° °
o 2 Negative loglikelihood
18
X % J imel
16 62 ecreases over time!
: !
ge) ko) . -
g 18 £ 43
7] [0 . @
fé, 11 ié‘» %g F
-1 10 - 3.g
g o z 39 -
& 8 5 32 -’1,.._._ ’J‘- .
< 7 < 58 "‘Q‘I
6 53
° . 3 r
4 1.6
; o o o 1:3 o JJ }I :l:
2 ° 0.
1 ® @ 89 -0 L @- o
0 P 0.2 -@- - . ”e :t
0:do 1:n't 2:know 3. 0:dd:@knowB:. 4:15:d&:TKno:. 9:N10:dd1@KnA8:.1415:dGITKNAN:. 1920: @122 KN@8:.2425. @E2T KN@8:.
Timestep Timestep
-®- openai -@- Istm -®- openai -@- Istm

Holtzman et. al., ICLR 2020

Beam search gets repetitive and repetitive

dogs dogs dogs dogs dogs dogs dogs dogs

O N 00 © O -

Worse for transformer LMs

—_— —
PT
¢

N W

—
o

w

Negative Loglikelihood
9
®

O = NN W & OO N @

0:dogs 1:dogs 2:dogs 3:dogs 4.dogs 5:dogs 6:dogs

Timestep

-&- openai @ Istm

Holtzman et. al., ICLR 2020

Beam search gets repetitive and repetitive

I'm tired. I'm tired. I'm tired. I'm tired. I'm tired. I'm tired. I'm tired. I'm tired. I'm tired. I'm tired. I'm tired.

Longer it goes, the worse it gets.

Negative Loglikelihood

OO0 ====t NN WU hAhi QOO0 9909 N
ONBGI00= N CI0NIN CI0OLINS 0100 SN B IO UTNI S IO S 100~
.

M“ AL AL ALLALLL

-&- openai @ Istm
Holtzman et. al., ICLR 2020

How can we reduce repetition?

® Don't repeat n-grams (Hacky, but works!)

® Minimize additional loss term for minimizing hidden state similarity (LSTMs)

j}t — g(lOg P(ytl {y}<t)_ (hta ht—m))

(Celikyilmaz et al., NAACL 2018, Paulus et al., ICLR 2018)

Probability

Step-by-step Maximization

1 v
0.8
0.6
0.4
0.2
0
0 20 40 60 80 100

Timestep Beam Search

Holtzman et. al., ICLR 2020

Time to get wandom: Sampling

® ¢ = sample a token from the distribution of tokens

VN

He wanted to go to the —— <

y,~ Py, =wliyl)

1
M
n
~+
q
o
O
3

grocery
store
airport
pub

gym
bathroom
game
beach
hospital
doctor

Randomly

sample token
according to
distribution

from

Whoa, too andom: Temperature Scaling

® Too much randomness: distribution has too much entropy

Whoa, too andom: Temperature Scaling

® Too much randomness: distribution has too much entropy

® Solution: Make the distribution more “peaky” with temperature scaling

Op

Recall: 7(y,[{y}<) = ~M
E“'m
m=1

Whoa, too andom: Temperature Scaling

® Too much randomness: distribution has too much entropy

® Solution: Make the distribution more “peaky” with temperature scaling

Whoa, too andom: Temperature Scaling

® Too much randomness: distribution has too much entropy

® Solution: Make the distribution more “peaky” with temperature scaling

“tlatter”
o /7T T > 1 distribution
e n

Vel yYe) = v

Z eOm /T -
m=1 "peakier”
r<l

Maybe we need fewer options: Top-k sampling

® The entire distribution over tokens is not needed at every step

® Many token choices should have no chance of being selected

(Holtzman et. al., ACL 2018; Fan et al., ACL 2018)

Maybe we need fewer options: Top-k sampling

® The entire distribution over tokens is not needed at every step
® Many token choices should have no chance of being selected

® Only sample from the top k tokens in the distribution

grocery
store Ra qdomly sample

token from top k

j}tN (—Wl{y}<t)

He wanted to go to the —— hig nest probability
tokens in

(Holtzman et. al., ACL 2018; Fan et al., ACL 2018)

Issues with top-k sampling

Top-k can cut-off too quickly Top-k can cut-off too slowly

thought
knew hot I
had warm
cooling |
saw on i
did B _ _ _ heating |
the

he said “ In - : L :
S , ever said | ate pizza while it was still fresh

wanted qud
told warming

liked burning
cooking
got

(Holtzman et. al., ICLR 2020)

| don’t know how many options | need: Top-p sampling

® Also known as nucleus sampling

® Sample from subset of vocabulary where probability mass is concentrated

Py ivic) Pyl 1yle) P;(y, | 1y} <)

(Holtzman et. al., ICLR 2020)

| don’t know how many options | need: Top-p sampling

® Also known as nucleus sampling:
® Sample from subset of vocabulary where probability mass is concentrated

® Probability mass has a dynamically changing nucleus

=i T
PR IYE<) Pyl {yle) PrOyl{v)o)

*nuclei not to scale (Holtzman et. al., ICLR 2020)

| don’t know how many options | need: Top-p sampling

Only sample from the

® Also known as nucleus sampling:
nucleus of the distribution

® Sample from subset of vocabulary where probability mass is conq pntrated

® Probability mass has a dynamically changing nucleus

=
PEOIYE<) PEy{ye) PEOy)2

*nuclei not to scale (Holtzman et. al., ICLR 2020)

This all sounds a bit risky

® \What it my sequence just isn't very good?

Optimize other sequence-level scores: Re-ranking

® \What it my sequence just isn't very good?
® Sample a bunch of sequences
® Define a score to approximate the quality of your sequence.

® Simplest is to just use perplexity!

Optimize other sequence-level scores: Re-ranking

® \What it my sequence just isn't very good?

® Sample a bunch of sequences

® Define a score to approximate the quality of your sequence.
® Simplest is to just use perplexity!

® However, re-rankers can be used to score a variety of properties: style
(Holtzman et al., 2018), discourse (Gabriel et al., 2019), entailment/tactuality
(Goyal et al., 2020), logical consistency (Lu et al., 2020), and many more...

Optimize other sequence-level scores: Re-ranking

® \What it my sequence just isn't very good?
® Sample a bunch of sequences

® Define a s

Change your distribution

® Simplest i at inference time!

® However, re-rarnikel darT pe used (C OTe a variety C rties:sty\e
(Holtzman et al., 2018), discourse (Gabriel et al., 2019), entailment/tactuality
(Goyal et al., 2020), logical consistency (Lu et al., 2020), and many more...

KNN Language Models

® Don't just rely on your trained model to generate a distribution over
tokens

® Use knowledge of similar contexts from another corpus

Training Contexts Targets || Representations Distances Nearest k Normalization Aggregation
C; V; ki = fl(c) d; = d(q,k;) p(k;) o< exp(—d;) PN () = D Ty=vp(ki)
Obama was senator for | lllinois @O00O® || 4 Hawaii |3 || Hawaii|0.7 —= Hawaii | 0.8
Barack is married to | Michelle Ce00) [—*| 100 lllinois |4 [~ lllinois |0.2 74: lllinois | 0.2
Obama was born in | Hawaii @OOe® ™ 5 Hawaii |5 —| Hawaii|0.1 l
Obama is a native of | Hawaii @000 — 3 Classification Interpolation
* pr(Y) p(y)=ApknN(y) + (1= A)pLm(v)
Test Context Target Representation
X q=f(z) Hawaii |0.2 Hawaii | 0.6
lllinois | 0.2 > lllinois | 0.2
Obama’s birthplace is ? (Jeolel) >

(Khandelwal et. al., ICLR 2020)

KNN Language Models

your trained model to generate a distribution over

Initialize a
contexts

® Use knowl\ [dge ot similar contexts from another corpus

Training Contexts Targets || Representations Distances Nearest k Normalization Aggregation
C; V; ki = fl(c) d; = d(q,k;) p(k;) o< exp(—d;) PN () = D Ty=vp(ki)
Obama was senator for | lllinois @O00O® || 4 Hawaii |3 || Hawaii|0.7 —= Hawaii | 0.8
Barack is married to | Michelle Ce00) [—*| 100 lllinois |4 [~ lllinois |0.2 74: lllinois | 0.2
Obama was born in | Hawaii @OOe® ™ 5 Hawaii |5 —| Hawaii|0.1 l
Obama is a native of | Hawaii @000 — 3 Classification Interpolation
* pr(Y) p(y)=ApknN(y) + (1= A)pLm(v)
Test Context Target Representation
X q=f(z) Hawaii |0.2 Hawaii | 0.6
lllinois | 0.2 > lllinois | 0.2
Obama’s birthplace is ? (Jeolel) >

(Khandelwal et. al., ICLR 2020)

KNN Language Models

aangrate a distribution over
Efficiently compute between each

context in DB and current sequence

Training Contexts Targets || Representations Distahces Nearest k Normalization Aggregation
C; Uy ki = f(ci) di = d(q, k;) p(k;) o< exp(—d;) PNN(Y) =) Ly=up(ks)
Obama was senator for | lllinois @00® [4 Hawaii|3 |—» Hawaii|0.7 |—=% Hawaii | 0.8
Barack is married to | Michelle Ce0O —*| 100 lllinois |4 [~ lllinois |0.2 74: lllinois | 0.2
Obama was born in | Hawaii @OOe® ™ 5 Hawaii |5 —| Hawaii|0.1 l
Obama is a native of | Hawaii @000 — 3 Classification Interpolation
A pr(Y) py)=ApnN () + (1= A)prv(y)
Test Context Target Representation
T ¢ = f(z) Hawaii | 0.2 Hawaii | 0.6
lllinois |0.2 > lllinois | 0.2
Obama’s birthplace is ? (Jeolel) >

(Khandelwal et. al., ICLR 2020)

KNN Language Models

® Don't just rely on your traj

Compute distribution over possible (&El1fe =18 from
tokens P P S

context DB sequences using

® Use knowledge of similar contexts from another corpus

Training Contexts Targets || Representations Distances Nearest k Normalizatibn Aggregation
C; V; ki = fl(c) d; = d(q,k;) p(k;) o< exp(—d;) PN () = D Ty=vp(ki)
Obama was senator for | lllinois @O00O® || 4 Hawaii |3 || Hawaii|0.7 —= Hawaii | 0.8
Barack is married to | Michelle Ce00) [—*| 100 lllinois |4 [~ lllinois |0.2 74: lllinois | 0.2
Obama was born in | Hawaii @OOe® ™ 5 Hawaii |5 —| Hawaii|0.1 l
Obama is a native of | Hawaii @000 — 3 Classification Interpolation
* pr(Y) p(y)=ApknN(y) + (1= A)pLm(v)
Test Context Target Representation
X q=f(z) Hawaii |0.2 Hawaii | 0.6
lllinois |0.2 lllinois | 0.2
Obama’s birthplace is ? (Jeolel) >

(Khandelwal et. al., ICLR 2020)

KNN Language Models

stribution from nearest neighbor

® Don't just rely on your trained mode| po—oaovata—
Interpolate d

tokens

search with model distribution

® Use knowledge of similar contexts from another corpus

Training Contexts Targets || Representations Distances Nearest k Normalization 1 bregation
C; Uy ki = f(ci) di = d(q, k;) p(k;) o< exp(—d;) pex| | =D ly=vp(ki)
Obama was senator for | lllinois @00® [4 Hawaii|3 |—» Hawaii|0.7 |—=% Hawaii | 0.8
Barack is married to | Michelle Ce0O —*| 100 lllinois |4 [~ lllinois |0.2 74: lllinois | 0.2
Obama was born in | Hawaii @OOe® ™ 5 Hawaii |5 —| Hawaii|0.1 l
Obama is a native of | Hawaii @000 — 3 Classification Interpolation
A pr(Y) py)=ApnN () + (1= A)prv(y)
Test Context Target Representation
T ¢ = f(z) Hawaii | 0.2 Hawaii | 0.6
lllinois |0.2 > lllinois | 0.2
Obama’s birthplace is ? (Jeolel) >

(Gulcehre et al., 2015; Venugopalan et al., EMNLP 2016; Khandelwal et. al., ICLR 2020)

Plug and Play Language Models!

® \What if | want to encourage a tough to formalize behavior at inference
time?

OK\ de;"C'OUS _______ Attribute Model p(a|x)]

chiiken tasAtes |A/\/\ !N\/\

/\/\/\ /\/\/\ : Step 1 ‘/\/\/\ Original distribution
A :'_'AI_" ("ok")

Backward Pass
and update latents

>» Forward Pass

M LM

Step 2 .
; Recompute with
p(x) p(x) updated latents
> >» Recompute

R s ., = 1 Step 3 | NJ\ Updated distribution

The chicken tastes | ("delicious")

(Dathathri et al., ICLR 2020)

PI u g a n d P Define an attribute model that scores the generated !

sequence. Each generated token must try to increase the

score given to the sequence by the attribute model
® \What if | want to encou

time?

OK\ de;"C'OUS _______ Attribute Model p(a|x)]

chicken tasAtes A |NJ\

> Forward Pass
Step 1 /\/\/\ Original distribution
‘ (Ilokll)

Backward Pass
and update latents

| M Step 2 |
Recompute with
p(x) updated latents
> Recompute
A Step 3 |N\/\ Updated distribution
The chicken tastes | "delicious’)

(Dathathri et al., ICLR 2020)

Plug and Play Language Models!

Backpropagate loss with respect to

® \What if | wxe malize behavior at inference

time?

attribute score

ok

~ de;"c"’us _______ Attribute Model p(a|x)]

chiiken tasAtes IA/\/\ !Mj\

/\/\/\ /\/\/\ : Step 1 ‘/\/\/\ Original distribution
A '_'AI_ ("ok")

Backward Pass
and update latents

>» Forward Pass

M LM

Step 2 .
; Recompute with
p(x) p(x) updated latents
> >» Recompute

\T/ Step 3 N\/\ Updated distribution
| ("delicious")

The chicken tastes |

(Dathathri et al., ICLR 2020)

Plug and Play Language Models!

® \What if | want to encourage a tough to formalize behavior at inference
time?

ok delicious

Attribute Model p(a|x)]

-
-="
-
PR
L 4

chicken

S
Update internal l

activations of language

> Forward Pass
Step 1 /\/\/\ Original distribution
‘ (Ilokll)

Backward Pass
and update latents

Step 2

Recompute with

model based on) updated latents

> Recompute

Step 3 |/v\/\ Updated distribution
The chicken tastes | Haelicious

these gradients

(Dathathri et al., ICLR 2020)

Plug and Play Language Models!

® \What if | want to encourage a tough to formalize behavior at inference

time?

Attribute Model p(a|x)]

Update distribution based |_
on new activations

LM
p(x) g
—’i’
The chicken tastes

Step 1

Step 2

Step 3

>» Forward Pass

Original distribution
(Ilokll)

Backward Pass
and update latents

Recompute with
updated latents

Recompute

Updated distribution
("delicious")

(Dathathri et al., ICLR 2020)

Output: She hit the rope and the tire fell on top of her.

~b

Backpropagation

Inference time
optimization with
respect to future
constraints

Tt 1 1

N

1
X

1 A2 AN Yy Ray ran - okay

Ray hung a tire on a

Future constraints described Ray ran to his
daughter to make Z
sure she was okay.

rope to make his
daughter a swing.

by natural language

T ————

X (Qin et. al., EMNLP 2020)

Takeaways

® Decoding is a challenging problem in natural language generation

® Human language distribution is noisy and doesn't reflect simple properties
(i.e., maximization)

® Decoding algorithms can allow us to interject inductive biases that
encourage properties of coherent NLG

® A |lot more work to be done!

Training Neural
Text Generation Models

Antoine Bosselut

Generation Model Basics

1. At each time step, model computes a score o, for each token in our

vocabulary, w, € V
0,=/(y}<)

2. Compute a probability distribution over these scores (usually softmax)

0
is your distribution _ _ e
O =il) = ZM eOm

m=1

3. Define a loss function to select a token from this distribution

Maximizing Likelihood

® Trained to generate the next word given a set of preceding words

[Text Generation Model]

Maximizing Likelihood

® Trained to generate the next word given a set of preceding words

K
Y1
sailed

T

[Text Generation Model]

Maximizing Likelihood

® Trained to generate the next word given a set of preceding words

Y3
achoss
[Text Generation Model]
ft
Allen sailed

Yoo

Maximizing Likelihood

® Trained to generate the next word given a set of preceding words

Y3
oceTans
[Text Generation Model]
! ! !
Allen sailed across

Yo Y0¥

Maximizing Likelihood

® Trained to generate the next word given a set of preceding words

>x<
V4
In

T

[Text Generation Model]

! 1 1 !

Allen sailed across oceans

Yo Y Y X

Maximizing Likelihood

® Trained to generate the next word given a set of preceding words

[Text Generation Model]

! 1 1 !

Allen sailed across oceans =--

Yo Y Y X

Maximizing Likelihood

® Trained to generate the next word given a set of preceding words

V13
bo#ght
[Text Generation Model]
! ! ! ! !
Allen sailed across oceans - He

R R T

Maximizing Likelihood

® Trained to generate the next word given a set of preceding words

o
‘T’
[Text Generation Model]
! ! ! ! ! !
Allen sailed across oceans - He bought

Yo Y Y X Yrea Vi

Maximizing Likelihood

® Trained to generate the next word given a set of preceding words

Y11
boat
1
[Text Generation Model]
! ! ! ! ! ! !
Allen sailed across oceans - He bought 2

Yo Y Y X Yiia Yz Vi

Maximizing Likelihood

® Trained to generate the next word given a set of preceding words

VT
<END>
T
[Text Generation Model]
! ! ! ! ! ! ! !
Allen sailed across oceans - He bought 2 boat

Yo Y Y X Yoo Vi3 Yro Vi

Maximizing Likelihood
® Trained to generate the next word given a set of preceding words

I
2L = - Z log P(y;" [{y*] <))
=1

1 O A Yies Yo Y Yp
t t t t t t t t
[Text Generation Model]
tot ot tot 1

Yo YoY% Y4 Yrs Vi, Vi

Issue #1: MLE discourages diversity

Context: 'n ashocking finding, scientist discovered a herd
of unicorns living in a remote, previously
unexplored valley, in the Andes Mountains. Even
more surprising to the researchers was the fact
that the unicorns spoke pertect English.

The study, published in the Proceedings of the

National Academy of Sciences of the United States of
America (PNAS), was conducted by researchers from the
Universidad Nacional Autonoma de México (UNAM)
and the Universidad Nacional Autéonoma de México
(UNAM/Universidad Nacional Auténoma de México/
Universidad Nacional Auténoma de México/
Universidad Nacional Auténoma de México/

Universidad Nacional Autonoma de México...
Holtzman et. al., ICLR 2020

Continuation:

Issue #1: MLE discourages diversity

1

Probability
- O -
~ O @

O
N

0

Timestep

Beam Search

Holtzman et. al., ICLR 2020

Alternatives: Unlikelihood Training

® Sequence-level Unlikelihood Training

® Given a set of undesired tokens & , lower their likelihood in context

Loie = — log P(y* | {y*™}) Lo = Z log(1 — P(yneg‘ Wi <))
4

Y neg

Welleck et. al., ICLR 2020

Alternatives: Unlikelihood Training

® Sequence-level Unlikelihood Training

® Given a set of undesired tokens & , lower their likelihood in context

Loie = — log P(y* | {y*™}) Lo = Z log(1 — P(yneg‘ Wi <))
4

Y neg

Typical Negative
Loglikehood objective

Welleck et. al., ICLR 2020

Alternatives: Unlikelihood Training

® Sequence-level Unlikelihood Training

® Given a set of undesired tokens & , lower their likelihood in context

Loie = — log P(y* | {y*™}) Lo = Z log(1 — P(yneg‘ Wi <))

Unlikeli
lowers the probability of

hood objective

Typical Negative

Log\ikehood ObjeCtive certain tokens

Welleck et. al., ICLR 2020

Alternatives: Unlikelihood Training

® Sequence-level Unlikelihood Training

® Given a set of undesired tokens & , lower their likelihood in context

Loie = — log P(y* | {y*™}) Lo = Z log(1 — P(yneg‘ Wi <))
4

)}neg

t _ t { Combine them for full
Log= 2yt oLy

unlikelihood training

Welleck et. al., ICLR 2020

Alternatives: Unlikelihood Training

® Sequence-level Unlikelihood Training

® Given a set of undesired tokens & , lower their likelihood in context

Loie = — log P(y* | {y*™}) Lo = Z log(1 — P(yneg‘ Wi <))
4

Y neg

[_ [[
gULE T gMLE T agUL But wait, what's %?

Welleck et. al., ICLR 2020

Alternatives: Unlikelihood Training

® Sequence-level Unlikelihood Training

® Given a set of undesired tokens & , lower their likelihood in context

Loie = — log P(y* | {y*™}) Lo = Z log(1 — P(yneg‘ Wi <))
4

Y neg

[_ [[
Loe =Lyt oLy

Welleck et. al., ICLR 2020

Alternatives: F° Softmax

® Avoid likelihood issues by

fa ctorlzmg the SOftmaX (1) Unique tokens, sorted by frequency frequency
the of and to in a be but are first during II
e e e only about game later three found music
¢ lnltlahze C frequency role match way common sometimes decision king T e T
2BRLECRELERE 2R 5
C‘aSSGS mission organize scoring castle property curb --- = @ = ®© ~=§c80 S §<_U

(if) Assigning frequency class

e Distribute vocabulary into _ I. m]_l_l_ll
classes so that token T and to in @ be

frequency uniforml Ca but are il
q Y Y first during pervasive

distributed across and <omitted> <omitted>

between classes

Choi et. al., EMNLP 2020

Alternatives: F° Softmax

® | ecarn to select both frequency class

token but are first during are

. . . pool: C3 ly about |at .
and vocabulary token during training °T”y e asnE first
‘during m—
only
about
Py, =w,[{y}) = _ game
[[
! < Ci C2 *C3 Ct C5 Co Cn k» later
(i) Frequency class prediction (if) Token
T prediction
restaurants are closed next
* text generation = token
eV
P(yt:Wn‘{y}<t): C
chh

c=1

Issue #2: Exposure Bias

® During training, we condition on gold context tokens that are real human-
generated text

Lye = — log P(y* | {y*})

® During inference, we decode from distributions conditioned on previously
generated tokens

gdec — = lOgP(j\/tl {y}<t)

Issue #2: Exposure Bias

1 0
0.8
0.6
0.4
0.2
0
0 20 40 60 80 100

Timestep

Probability

Beam Search

Holtzman et. al., ICLR 2020

Issue #2: Exposure Bias

® During training, we condition on gold context tokens that are real human-
generated text

Lye = — log P(y* | {y*})

® During inference, we decode from distributions conditioned on previously
generated tokens

gdec — = lOgP(j\/tl {y}<t)

Reinforcement Learning

® Cast a text generation model as a MDP
- State is denoted by a preceding context
- Actions are the words you can generate
- Policy is the text generation model

- Rewards are provided by an external source

REINFORCE

® Trained to generate the next word given a set of preceding words

T
Fro=—), rOlog PG| {5} . {y*})

T
Srs Sro Sra Ir
t t t t

[Text Generation Modqgel]
oottt tot 1

Yo Yy Y3 Y3 START Vi3 Vro Vo

Reward Estimation

® How do we define a reward function?
® Bl EU (machine translation; Ranzato et al., ICLR 2016; Wu et al., 2016)
® ROUGE (summarization; Paulus et al., ICLR 2018; Celikyilmaz et al., NAACL 2018)
® CIDEr (image captioning; Rennie et al., CVPR 2017)

® SPIDEr (image captioning; Liu et al., ICCV 2017)

Reward Estimation

® How do we define a reward function?
® Bl EU (machine translation; Ranzato et al., ICLR 2016; Wu et al., 2016)
® ROUGE (summarization; Paulus et al., ICLR 2018; Celikyilmaz et al., NAACL 2020)
® CIDEr (image captioning; Rennie et al., CVPR 2017)

® SPIDEr (image captioning; Liu et al., ICCV 2017)

Optimizing for the task vs. Gaming the reward

What behaviors can we tie to rewards?

® Cross-modal consistency (Ren et al., CVPR 2017)

® Simplicity (Zhang and Lapata, EMNLP 2017)

® Temporal consistency (Bosselut et al., NAACL 2018)
® Politeness (Tan et al., TACL 2018)

® Paraphrasing (Li et al., EMNLP 2018)

® Sentiment (Gong et al., NAACL 2019)

® Formality (Gong et al., NAACL 2019)

Implementation Thoughts

® Credit Assignment

r(3) vs. r(Y)

Implementation Thoughts

® Credit Assignment
() vs. ()

® Set appropriate baseline

L =—), () — blog PG| {5} . {y*})

Implementation Thoughts

® Credit Assignment
() vs. H(¥)
® Set appropriate baseline
L =—), () — blog PG| {5} . {y*})

® Mix with MLE

What it you don’t know what to use as reward?

® Adversarial Learning!
® Use an adversarially-learned scoring tfunction to provide rewards
® Still often uses REINFORCE

® Dialogue systems (Li et al., EMNLP 2017), Visual storytelling (Wang et al.,
ACL 2018)

Human-in-the-loop Learning

© Collect human feedback

A Reddit post is
sampled from
the Reddit
TL;DR dataset.

Various policies
are used to
sample a set of
summaries.

Two summaries
are selected for
evaluation.

A human judges
which is a better
summary of the
post.

2

“ is better than k”

® Train reward model

One post with
two summaries
judged by a
human are fed
to the reward
model.

The reward
model
calculates a
reward r for
each summary.

The loss is
calculated based
on the rewards
and human label,
and is used to
update the
reward model.

!

loss = Iog(o(rj- r.)

!

“] is better than k”

© Train policy with PPO

A new post is
sampled from the
dataset.

The policy
generates a
summary for the
post.

The reward
model calculates
a reward for the
summary.

The reward is
used to update
the policy via
PPO.

(Stiennon et al., NeurlPS 2020)

Takeaways

Maximum likelihood estimation is still the premier algorithm for training text
generation models

Diversity is an issue with MLE, so new approaches focus on mitigating the
effects of common words

Exposure bias causes text generation models to lose coherence easily, so
learning from its own samples is a promising way forward

Reinforcement learning allows models to learn tough to quantity behaviors

Much morel!

Decoding Retferences

—_—

] Gulcehre et al., On Using Monolingual Corpora in Neural Machine Translation. arXiv 2015

Wu et al., Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation. arxiv 2016

Venugopalan et al., Improving LSTM-based Video Description with Linguistic Knowledge Mined from Text. EMNLP 2016

Li et al., A Diversity-Promoting Objective Function for Neural Conversation Models. EMNLP 2018
Paulus et al., A Deep Reinforced Model for Abstractive Summarization. ICLR 2018

Celikyilmaz et al., Deep Communicating Agents for Abstractive Summarization. NAACL 2018
Holtzman et al., Learning to Write with Cooperative Discriminators. ACL 2018

Fan et al., Hierarchical Neural Story Generation. ACL 2018

N0 ® N o g B~ W N

Gabriel et al., Cooperative Generator-Discriminator Networks for Abstractive Summarization with Narrative Flow. arXiv 2019

—
O

] Dathathri et al., Plug and Play Language Models: A Simple Approach to Controlled Text Generation. ICLR 2020

—_—
—_—

] Holtzman et al., The Curious Case of Neural Text Degeneration. ICLR 2020

—
N

] Khandelwal et al., Generalization through Memorization: Nearest Neighbor Language Models. ICLR 2020

—
w

] Qin et al., Back to the Future: Unsupervised Backprop-based Decoding for Counterfactual and Abductive Commonsense Reasoning.
NLP 2020

m.
<,

[14] Goyal and Durrett, Evaluating Factuality in Generation with Dependency-level Entailment. Findings of EMNLP 2020

[15] Lu et al., NeuroLogic Decoding: (Un)supervised Neural Text Generation with Predicate Logic Constraints. arXiv 2020

—_—

N ® N oUW N

= T 32 3= =2 = 3 =
X 43 o a s NN =2 0O

Training Reterences

Bengio et. al., Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks. NeurlPS 2015
Ranzato et al., Sequence Level Training with Recurrent Neural Networks. ICLR 2016

Wu et al., Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation. 2016
Ren et al., Deep Reinforcement Learning-based Image Captioning with Embedding Reward. CVPR 2017
Rennie et al., Self-critical Sequence Training for Image Captioning. CVPR 2017

Liu et al., Improved Image Captioning via Policy Gradient Optimization of SPIDEr. ICCV 2017

Zhang and Lapata, Sentence Simplification with Deep Reinforcement Learning. EMNLP 2017

Li et al., Adversarial Learning for Neural Dialogue Generation. EMNLP 2017

Paulus et al., A Deep Reinforced Model for Abstractive Summarization. ICLR 2018

Celikyilmaz et al., Deep Communicating Agents for Abstractive Summarization. NAACL 2018

] Bosselut et al., Discourse-Aware Neural Rewards for Coherent Text Generation. NAACL 2018

Wang et al., No Metrics Are Perfect: Adversarial Reward Learning for Visual Storytelling. ACL 2018

Tan and Bansal, Polite Dialogue Generation Without Parallel Data. TACL 2018

Li et al., Paraphrase Generation with Deep Reinforcement Learning. EMNLP 2018

Gong et al., Reinforcement Learning Based Text Style Transfer without Parallel Training Corpus. NAACL 2019
Holtzman et. al., The Curious Case of Neural Text Degeneration. ICLR 2020

] Welleck et. al., Neural Text Generation With Unlikelihood Training. ICLR 2020

Stiennon et al., Learning to summarize from human feedback. NeurlPS 2020

