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Generation Model Basics

1. At each time step, model computes a score o, for each token in our

vocabulary, w, € V
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Generation Model Basics

1. At each time step, model computes a score o, for each token in our

vocabulary, w, € V
0,=/(y}<)

2. Compute a probability distribution over these scores (usually softmax)
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3. Detine a function to select a token from this distribution
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Simplest approach: Argmax Decoding

® o = select the token with the highest probability:

y,=argmax (y,=w|{y}.,)
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Maybe we need more options

® ¢ = cache b paths for two steps
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Maybe we need more options: Beam Search

It b =2, select

® ¢ = cache b paths for two steps top two tokens
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Maybe we need more options: Beam Search

Use them both as inputs to

® g = cache b paths for two steps the decoder at next step
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Maybe we need more options: Beam Search
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Maybe we need more options: Beam Search

Select top b sequence continuations

across both distributions
® ¢ = cache b paths for two steps
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Maybe we need more options: Beam Search

Repeat!
® ¢ = cache b paths for two steps
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Does this penalize longer sequences?

A
s(Y) = Z log P()’zl {y}<t)
=1

Shorter sequences will score better!




Does this penalize longer sequences?

® Solution: Normalize by token length of sequence
Y|

S(Y) = —Z log P(y,1 {y} )

pd

® Solution: Normalize by token length relative to reference sequence
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Wu et. al., 2016



Beam search gets repetitive and repetitive

Context: In a shocking finding, scientist discovered a herd
of unicorns living in a remote, previously

unexplored valley, in the Andes Mountains. Even

more surprising to the researchers was the fact
that the unicorns spoke pertect English.

o e . The study, published in the Proceedings of the
Continuation: National Academy of Sciences of the United States of
America (PNAS), was conducted by researchers from the
Universidad Nacional Autonoma de México (UNAM)
and the Universidad Nacional Autéonoma de México
(UNAM/Universidad Nacional Auténoma de México/
Universidad Nacional Auténoma de México/
Universidad Nacional Auténoma de México/

Universidad Nacional Autonoma de México...
Holtzman et. al., ICLR 2020



Beam search gets repetitive and repetitive

Context: In a shocking finding, scientist discovered a herd
of unicorns living in a remote, previously

inexplored vallev. in the Andes Mountair =18

Repetition is a big problem
Continuatic in text generation!
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Negative Loglikelihood
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Artitfact of Maximum Likelihood Training
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Beam search gets repetitive and repetitive
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Beam search gets repetitive and repetitive

I'm tired. I'm tired. I'm tired. I'm tired. I'm tired. I'm tired. I'm tired. I'm tired. I'm tired. I'm tired. I'm tired.

Longer it goes, the worse it gets.
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How can we reduce repetition?

® Don't repeat n-grams (Hacky, but works!)

® Minimize additional loss term for minimizing hidden state similarity (LSTMs)

j}t — g(lOg P(ytl {y}<t)_ (hta ht—m))

(Celikyilmaz et al., NAACL 2018, Paulus et al., ICLR 2018)
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Time to get wandom: Sampling

® ¢ = sample a token from the distribution of tokens
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Whoa, too andom: Temperature Scaling

® Too much randomness: distribution has too much entropy
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Whoa, too andom: Temperature Scaling

® Too much randomness: distribution has too much entropy

® Solution: Make the distribution more “peaky” with temperature scaling
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Maybe we need fewer options: Top-k sampling

® The entire distribution over tokens is not needed at every step

® Many token choices should have no chance of being selected

(Holtzman et. al., ACL 2018; Fan et al., ACL 2018)



Maybe we need fewer options: Top-k sampling

® The entire distribution over tokens is not needed at every step
® Many token choices should have no chance of being selected

® Only sample from the top k tokens in the distribution

grocery
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token from top k
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(Holtzman et. al., ACL 2018; Fan et al., ACL 2018)




Issues with top-k sampling

Top-k can cut-off too quickly Top-k can cut-off too slowly
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cooking
got

(Holtzman et. al., ICLR 2020)



| don’t know how many options | need: Top-p sampling

® Also known as nucleus sampling

® Sample from subset of vocabulary where probability mass is concentrated

Py ivic) Pyl 1yle) P;(y, | 1y} <)

(Holtzman et. al., ICLR 2020)



| don’t know how many options | need: Top-p sampling

® Also known as nucleus sampling:
® Sample from subset of vocabulary where probability mass is concentrated

® Probability mass has a dynamically changing nucleus

=i T
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*nuclei not to scale (Holtzman et. al., ICLR 2020)



| don’t know how many options | need: Top-p sampling

Only sample from the

® Also known as nucleus sampling:
nucleus of the distribution

® Sample from subset of vocabulary where probability mass is conq pntrated

® Probability mass has a dynamically changing nucleus

=
PEOIYE<) PEy{ye)  PEOy )2

*nuclei not to scale (Holtzman et. al., ICLR 2020)



This all sounds a bit risky

® \What it my sequence just isn't very good?



Optimize other sequence-level scores: Re-ranking

® \What it my sequence just isn't very good?
® Sample a bunch of sequences
® Define a score to approximate the quality of your sequence.

® Simplest is to just use perplexity!



Optimize other sequence-level scores: Re-ranking

® \What it my sequence just isn't very good?

® Sample a bunch of sequences

® Define a score to approximate the quality of your sequence.
® Simplest is to just use perplexity!

® However, re-rankers can be used to score a variety of properties: style
(Holtzman et al., 2018), discourse (Gabriel et al., 2019), entailment/tactuality
(Goyal et al., 2020), logical consistency (Lu et al., 2020), and many more...



Optimize other sequence-level scores: Re-ranking

® \What it my sequence just isn't very good?
® Sample a bunch of sequences

® Define a s

Change your distribution

® Simplest i at inference time!

® However, re-rarnikel darT pe used (C OTe a variety C rties:sty\e
(Holtzman et al., 2018), discourse (Gabriel et al., 2019), entailment/tactuality
(Goyal et al., 2020), logical consistency (Lu et al., 2020), and many more...



KNN Language Models

® Don't just rely on your trained model to generate a distribution over
tokens

® Use knowledge of similar contexts from another corpus

Training Contexts Targets || Representations Distances Nearest k Normalization Aggregation
C; V; ki = fl(c) d; = d(q,k;) p(k;) o< exp(—d;) PN () = D Ty=vp(ki)
Obama was senator for | lllinois @O00O® || 4 Hawaii |3 || Hawaii|0.7 —= Hawaii | 0.8
Barack is married to | Michelle Ce00) [—*| 100 lllinois |4 [~  lllinois |0.2 74: lllinois | 0.2
Obama was born in | Hawaii @OOe® ™ 5 Hawaii |5 —| Hawaii|0.1 l
Obama is a native of | Hawaii @000 — 3 Classification Interpolation
* pr(Y) p(y)=ApknN(y) + (1= A)pLm(v)
Test Context Target Representation
X q=f(z) Hawaii |0.2 Hawaii | 0.6
lllinois | 0.2 > lllinois | 0.2
Obama’s birthplace is ? (Jeolel ) >

(Khandelwal et. al., ICLR 2020)
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KNN Language Models

aangrate a distribution over
Efficiently compute between each

context in DB and current sequence

Training Contexts Targets || Representations Distahces Nearest k Normalization Aggregation
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(Khandelwal et. al., ICLR 2020)



KNN Language Models

® Don't just rely on your traj

Compute distribution over possible (&El1fe =18 from
tokens P P S

context DB sequences using

® Use knowledge of similar contexts from another corpus

Training Contexts Targets || Representations Distances Nearest k Normalizatibn Aggregation
C; V; ki = fl(c) d; = d(q,k;) p(k;) o< exp(—d;) PN () = D Ty=vp(ki)
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KNN Language Models

stribution from nearest neighbor

® Don't just rely on your trained mode| po—oaovata—
Interpolate d

tokens

search with model distribution

® Use knowledge of similar contexts from another corpus

Training Contexts Targets || Representations Distances Nearest k Normalization 1 bregation
C; Uy ki = f(ci) di = d(q, k;) p(k;) o< exp(—d;) pex| | =D ly=vp(ki)
Obama was senator for | lllinois @00® [ 4 Hawaii|3 |—» Hawaii|0.7 |—=% Hawaii | 0.8
Barack is married to | Michelle Ce0O —*| 100 lllinois |4 [~  lllinois |0.2 74: lllinois | 0.2
Obama was born in | Hawaii @OOe® ™ 5 Hawaii |5 —| Hawaii|0.1 l
Obama is a native of | Hawaii @000 — 3 Classification Interpolation
A pr(Y) py)=ApnN () + (1= A)prv(y)
Test Context Target Representation
T ¢ = f(z) Hawaii | 0.2 Hawaii | 0.6
lllinois |0.2 > lllinois | 0.2
Obama’s birthplace is ? (Jeolel ) >

(Gulcehre et al., 2015; Venugopalan et al., EMNLP 2016; Khandelwal et. al., ICLR 2020)



Plug and Play Language Models!

® \What if | want to encourage a tough to formalize behavior at inference
time?

OK\ de;"C'OUS _______ Attribute Model p(a|x) ]

chiiken tasAtes |A/\/\ !N\/\

/\/\/\ /\/\/\ : Step 1 ‘/\/\/\ Original distribution
A :'_'AI_" ("ok")

Backward Pass
and update latents

>» Forward Pass

M LM

Step 2 .
; Recompute with
p(x) p(x) updated latents
> >» Recompute

R s ., = 1 Step 3 | NJ\ Updated distribution

The chicken tastes | ("delicious")

(Dathathri et al., ICLR 2020)



PI u g a n d P Define an attribute model that scores the generated !

sequence. Each generated token must try to increase the

score given to the sequence by the attribute model
® \What if | want to encou

time?
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(Dathathri et al., ICLR 2020)



Plug and Play Language Models!

Backpropagate loss with respect to

® \What if | wxe malize behavior at inference

time?

attribute score

ok

~ de;"c"’us _______ Attribute Model p(a|x) ]

chiiken tasAtes IA/\/\ !Mj\

/\/\/\ /\/\/\ : Step 1 ‘/\/\/\ Original distribution
A '_'AI_ ("ok")

Backward Pass
and update latents

>» Forward Pass

M LM

Step 2 .
; Recompute with
p(x) p(x) updated latents
> >» Recompute

\T/ Step 3 N\/\ Updated distribution
| ("delicious")

The chicken tastes |

(Dathathri et al., ICLR 2020)



Plug and Play Language Models!

® \What if | want to encourage a tough to formalize behavior at inference
time?

ok delicious
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-
-="
-
PR
L 4

chicken

S
Update internal l

activations of language

> Forward Pass
Step 1 /\/\/\ Original distribution
‘ (Ilokll)

Backward Pass
and update latents

Step 2

Recompute with

model based on ) updated latents

> Recompute
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The chicken  tastes | Haelicious

these gradients

(Dathathri et al., ICLR 2020)



Plug and Play Language Models!

® \What if | want to encourage a tough to formalize behavior at inference

time?

Attribute Model p(a|x) ]

Update distribution based |_
on new activations

LM
p(x) g
—’i’
The chicken tastes

Step 1

Step 2

Step 3

>» Forward Pass

Original distribution
(Ilokll)

Backward Pass
and update latents

Recompute with
updated latents

Recompute

Updated distribution
("delicious")

(Dathathri et al., ICLR 2020)



Output: She hit the rope and the tire fell on top of her.

~b

Backpropagation

Inference time
optimization with
respect to future
constraints

Tt 1 1

N

1
X

1 A2 AN Yy Ray ran - okay

Ray hung a tire on a

Future constraints described Ray ran to his
daughter to make Z
sure she was okay.

rope to make his
daughter a swing.

by natural language

T ————

X (Qin et. al., EMNLP 2020)



Takeaways

® Decoding is a challenging problem in natural language generation

® Human language distribution is noisy and doesn't reflect simple properties
(i.e., maximization)

® Decoding algorithms can allow us to interject inductive biases that
encourage properties of coherent NLG

® A |lot more work to be done!
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Generation Model Basics

1. At each time step, model computes a score o, for each token in our

vocabulary, w, € V
0,=/(y}<)

2. Compute a probability distribution over these scores (usually softmax)

0
is your distribution _ _ e
O =il ) = ZM eOm

m=1

3. Define a loss function to select a token from this distribution



Maximizing Likelihood

® Trained to generate the next word given a set of preceding words

[ Text Generation Model ]
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Maximizing Likelihood

® Trained to generate the next word given a set of preceding words
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Maximizing Likelihood

® Trained to generate the next word given a set of preceding words

>x<
V4
In

T

[ Text Generation Model ]

! 1 1 !

Allen sailed across oceans

Yo Y Y X




Maximizing Likelihood

® Trained to generate the next word given a set of preceding words

[ Text Generation Model ]
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Yo Y Y X




Maximizing Likelihood

® Trained to generate the next word given a set of preceding words
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Maximizing Likelihood

® Trained to generate the next word given a set of preceding words
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Maximizing Likelihood

® Trained to generate the next word given a set of preceding words
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Maximizing Likelihood

® Trained to generate the next word given a set of preceding words

VT
<END>
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[ Text Generation Model ]
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Allen sailed across oceans - He bought 2 boat
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Maximizing Likelihood
® Trained to generate the next word given a set of preceding words

I
2L = - Z log P(y;" [ {y*] <))
=1

1 O A Yies Yo Y Yp
t t t t t t t t
[ Text Generation Model ]
tot ot tot 1

Yo YoY% Y4 Yrs Vi, Vi



Issue #1: MLE discourages diversity

Context: 'n ashocking finding, scientist discovered a herd
of unicorns living in a remote, previously
unexplored valley, in the Andes Mountains. Even
more surprising to the researchers was the fact
that the unicorns spoke pertect English.

The study, published in the Proceedings of the

National Academy of Sciences of the United States of
America (PNAS), was conducted by researchers from the
Universidad Nacional Autonoma de México (UNAM)
and the Universidad Nacional Autéonoma de México
(UNAM/Universidad Nacional Auténoma de México/
Universidad Nacional Auténoma de México/
Universidad Nacional Auténoma de México/

Universidad Nacional Autonoma de México...
Holtzman et. al., ICLR 2020

Continuation:



Issue #1: MLE discourages diversity
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Probability
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O
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Timestep

Beam Search

Holtzman et. al., ICLR 2020



Alternatives: Unlikelihood Training

® Sequence-level Unlikelihood Training

® Given a set of undesired tokens & , lower their likelihood in context

Loie = — log P(y* | {y*™} ) Lo = Z log(1 — P(yneg‘ Wi <))
4

Y neg

Welleck et. al., ICLR 2020
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Alternatives: Unlikelihood Training

® Sequence-level Unlikelihood Training

® Given a set of undesired tokens & , lower their likelihood in context

Loie = — log P(y* | {y*™} ) Lo = Z log(1 — P(yneg‘ Wi <))
4

)}neg

t _ t { Combine them for full
Log= 2yt oLy

unlikelihood training

Welleck et. al., ICLR 2020



Alternatives: Unlikelihood Training

® Sequence-level Unlikelihood Training

® Given a set of undesired tokens & , lower their likelihood in context

Loie = — log P(y* | {y*™} ) Lo = Z log(1 — P(yneg‘ Wi <))
4

Y neg

[ _ [ [
gULE T gMLE T agUL But wait, what's %?

Welleck et. al., ICLR 2020



Alternatives: Unlikelihood Training

® Sequence-level Unlikelihood Training

® Given a set of undesired tokens & , lower their likelihood in context

Loie = — log P(y* | {y*™} ) Lo = Z log(1 — P(yneg‘ Wi <))
4

Y neg

[ _ [ [
Loe =Lyt oLy

Welleck et. al., ICLR 2020



Alternatives: F° Softmax

® Avoid likelihood issues by
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Alternatives: F° Softmax

® | ecarn to select both frequency class
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Issue #2: Exposure Bias

® During training, we condition on gold context tokens that are real human-
generated text

Lye = — log P(y* | {y*} )

® During inference, we decode from distributions conditioned on previously
generated tokens

gdec — = lOgP(j\/tl {y}<t)



Issue #2: Exposure Bias
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Issue #2: Exposure Bias

® During training, we condition on gold context tokens that are real human-
generated text

Lye = — log P(y* | {y*} )

® During inference, we decode from distributions conditioned on previously
generated tokens

gdec — = lOgP(j\/tl {y}<t)



Reinforcement Learning

® Cast a text generation model as a MDP
- State is denoted by a preceding context
- Actions are the words you can generate
- Policy is the text generation model

- Rewards are provided by an external source



REINFORCE

® Trained to generate the next word given a set of preceding words

T
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Reward Estimation

® How do we define a reward function?
® Bl EU (machine translation; Ranzato et al., ICLR 2016; Wu et al., 2016)
® ROUGE (summarization; Paulus et al., ICLR 2018; Celikyilmaz et al., NAACL 2018)
® CIDEr (image captioning; Rennie et al., CVPR 2017)

® SPIDEr (image captioning; Liu et al., ICCV 2017)



Reward Estimation

® How do we define a reward function?
® Bl EU (machine translation; Ranzato et al., ICLR 2016; Wu et al., 2016)
® ROUGE (summarization; Paulus et al., ICLR 2018; Celikyilmaz et al., NAACL 2020)
® CIDEr (image captioning; Rennie et al., CVPR 2017)

® SPIDEr (image captioning; Liu et al., ICCV 2017)

Optimizing for the task vs. Gaming the reward



What behaviors can we tie to rewards?

® Cross-modal consistency (Ren et al., CVPR 2017)

® Simplicity (Zhang and Lapata, EMNLP 2017)

® Temporal consistency (Bosselut et al., NAACL 2018)
® Politeness (Tan et al., TACL 2018)

® Paraphrasing (Li et al., EMNLP 2018)

® Sentiment (Gong et al., NAACL 2019)

® Formality (Gong et al., NAACL 2019)



Implementation Thoughts

® Credit Assignment

r(3) vs. r(Y)
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Implementation Thoughts

® Credit Assignment
() vs. H(¥)
® Set appropriate baseline
L =— ), () — blog PG| {5} . {y*})

® Mix with MLE



What it you don’t know what to use as reward?

® Adversarial Learning!
® Use an adversarially-learned scoring tfunction to provide rewards
® Still often uses REINFORCE

® Dialogue systems (Li et al., EMNLP 2017), Visual storytelling (Wang et al.,
ACL 2018)



Human-in-the-loop Learning

© Collect human feedback

A Reddit post is
sampled from
the Reddit
TL;DR dataset.

Various policies
are used to
sample a set of
summaries.

Two summaries
are selected for
evaluation.

A human judges
which is a better
summary of the
post.

2

“ is better than k”

® Train reward model

One post with
two summaries
judged by a
human are fed
to the reward
model.

The reward
model
calculates a
reward r for
each summary.

The loss is
calculated based
on the rewards
and human label,
and is used to
update the
reward model.

!

loss = Iog(o(rj- r.)

!

“] is better than k”

© Train policy with PPO

A new post is
sampled from the
dataset.

The policy
generates a
summary for the
post.

The reward
model calculates
a reward for the
summary.

The reward is
used to update
the policy via
PPO.

(Stiennon et al., NeurlPS 2020)



Takeaways

Maximum likelihood estimation is still the premier algorithm for training text
generation models

Diversity is an issue with MLE, so new approaches focus on mitigating the
effects of common words

Exposure bias causes text generation models to lose coherence easily, so
learning from its own samples is a promising way forward

Reinforcement learning allows models to learn tough to quantity behaviors

Much morel!
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