
Decoding from Neural  
Text Generation Models

Antoine Bosselut

Generation Model Basics
1. At each time step, model computes a score for each token in our

vocabulary,
on

wn ∈ V
On = f({y}<t) is your modelf(.)

1. At each time step, model computes a score for each token in our
vocabulary,

2. Compute a probability distribution over these scores (usually softmax)

on
wn ∈ V

On = f({y}<t)

P(yt = wn |{y}<t) =
eon

∑M
m=1 eom

 is your modelf(.)

 is your distribution
over tokens

P(.)

Generation Model Basics

Generation Model Basics
1. At each time step, model computes a score for each token in our

vocabulary,

2. Compute a probability distribution over these scores (usually softmax)

3. Define a function to select a token from this distribution

on
wn ∈ V

̂yt = g(P(yt |{y}<t))

 is your modelf(.)

 is your decoding
algorithm

g(.)

 is your distribution
over tokens

P(.)

On = f({y}<t)

P(yt = wn |{y}<t) =
eon

∑M
m=1 eom

Simplest approach: Argmax Decoding

• = select the token with the highest probability:g

̂yt = argmax P(yt = w |{y}<t)
w ∈ V

He wanted to go to the Model

restroom

airport
pub
gym
bathroom
game
beach
hospital
doctor

store
grocery

Simplest approach: Argmax Decoding

• = select the token with the highest probability:g

He wanted to go to the Model

restroom

store
grocery

airport
pub
gym
bathroom
game
beach
hospital
doctor

̂yt = argmax P(yt = w |{y}<t)
w ∈ V

Select highest
scoring token

Maybe we need more options: Beam Search

• = cache b paths for two stepsg

He wanted to
go to the Model

restroom

store
grocery

airport
pub
gym
bathroom
game
beach
hospital
doctor

Maybe we need more options: Beam Search

• = cache b paths for two stepsg

He wanted to
go to the Model

restroom

store
grocery

airport
pub
gym
bathroom
game
beach
hospital
doctor

If b = 2, select
top two tokens

Maybe we need more options: Beam Search

• = cache b paths for two stepsg

He wanted to
go to the Model

restroom

grocery

Model

Model

Use them both as inputs to
the decoder at next step

Maybe we need more options: Beam Search

• = cache b paths for two stepsg

He wanted to
go to the Model

restroom

grocery

,

.
and

with
at

store

stores
and

shop
.

Yield separate distribution
for both input tokens

Model

Model

Maybe we need more options: Beam Search

• = cache b paths for two stepsg

He wanted to
go to the

restroom

grocery

,

and

store

+

and
+

Select top b sequence continuations
across both distributions

Model

Maybe we need more options: Beam Search

• = cache b paths for two stepsg

He wanted to
go to the

restroom and

Model
He wanted to

go to the
grocery store

Model

,

.
and

with
at

store

stores
and

shop
.

Repeat!

Does this penalize longer sequences?

s(Y) =
T

∑
t=1

log P(yt |{y}<t)

Shorter sequences will score better!

Does this penalize longer sequences?
• Solution: Normalize by token length of sequence

• Solution: Normalize by token length relative to reference sequence

s(Y) =
1

|Y |

|Y|

∑
t=1

log P(yt |{y}<t)

s(Y) =
1

lp(Y)

|Y|

∑
t=1

log P(yt |{y}<t) lp(Y) =
(5 + |Y |)α

(5 + 1)α

Wu et. al., 2016

Beam search gets repetitive and repetitive

The study, published in the Proceedings of the
National Academy of Sciences of the United States of
America (PNAS), was conducted by researchers from the
Universidad Nacional Autónoma de México (UNAM)
and the Universidad Nacional Autónoma de México
(UNAM/Universidad Nacional Autónoma de México/
Universidad Nacional Autónoma de México/
Universidad Nacional Autónoma de México/
Universidad Nacional Autónoma de México…

Context:

Continuation:

In a shocking finding, scientist discovered a herd
of unicorns living in a remote, previously
unexplored valley, in the Andes Mountains. Even
more surprising to the researchers was the fact
that the unicorns spoke perfect English.

Holtzman et. al., ICLR 2020

Beam search gets repetitive and repetitive

The study, published in the Proceedings of the
National Academy of Sciences of the United States of
America (PNAS), was conducted by researchers from the
Universidad Nacional Autónoma de México (UNAM)
and the Universidad Nacional Autónoma de México
(UNAM/Universidad Nacional Autónoma de México/
Universidad Nacional Autónoma de México/
Universidad Nacional Autónoma de México/
Universidad Nacional Autónoma de México…

Context:

Continuation:

In a shocking finding, scientist discovered a herd
of unicorns living in a remote, previously
unexplored valley, in the Andes Mountains. Even
more surprising to the researchers was the fact
that the unicorns spoke perfect English.

Holtzman et. al., ICLR 2020

Repetition is a big problem
in text generation!

Why does this happen?

Holtzman et. al., ICLR 2020

Holtzman et. al., ICLR 2020

Artifact of Maximum Likelihood Training

Holtzman et. al., ICLR 2020

Artifact of Maximum Likelihood Training

Negative loglikelihood
decreases over time!

Beam search gets repetitive and repetitive

Holtzman et. al., ICLR 2020

Worse for transformer LMs

Beam search gets repetitive and repetitive

Holtzman et. al., ICLR 2020

Longer it goes, the worse it gets.

How can we reduce repetition?

• Don’t repeat n-grams (Hacky, but works!)  

• Minimize additional loss term for minimizing hidden state similarity (LSTMs)  
 

(Celikyilmaz et al., NAACL 2018, Paulus et al., ICLR 2018)

̂yt = g(log P(yt |{y}<t)−s(ht, ht−m))

Step-by-step Maximization

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

Pr
ob

ab
ili
ty

Timestep

Beam Search Text is Less Surprising

Beam Search
Human

Holtzman et. al., ICLR 2020

Time to get random: Sampling

̂yt ∼ P(yt = w |{y}<t)

He wanted to go to the Decoder

restroom

airport
pub
gym
bathroom
game
beach
hospital
doctor

store
grocery

• = sample a token from the distribution of tokensg

Randomly
sample token
according to
distribution
from P(.)

• Too much randomness: distribution has too much entropy

• Solution: Make the distribution more “peaky” with temperature scaling

Whoa, too random: Temperature Scaling

• Too much randomness: distribution has too much entropy

• Solution: Make the distribution more “peaky” with temperature scaling

P(yt |{y}<t) =
eon

∑M
m=1 eom

Recall:

Whoa, too random: Temperature Scaling

• Too much randomness: distribution has too much entropy

• Solution: Make the distribution more “peaky” with temperature scaling

P(yt |{y}<t) =
eon

∑M
m=1 eom

P(yt |{y}<t) =
eon / τ

∑M
m=1 eom / τ

Recall:

Whoa, too random: Temperature Scaling

Whoa, too random: Temperature Scaling

• Too much randomness: distribution has too much entropy

• Solution: Make the distribution more “peaky” with temperature scaling

P(yt |{y}<t) =
eon / τ

∑M
m=1 eom / τ

τ > 1

τ < 1

“flatter”
distribution

“peakier” 
distribution

Maybe we need fewer options: Top-k sampling

• The entire distribution over tokens is not needed at every step

• Many token choices should have no chance of being selected

(Holtzman et. al., ACL 2018; Fan et al., ACL 2018)

Maybe we need fewer options: Top-k sampling

• The entire distribution over tokens is not needed at every step

• Many token choices should have no chance of being selected

• Only sample from the top k tokens in the distribution

̂yt ∼ P * (yt = w |{y}<t)

He wanted to go to the Decoder

restroom

airport
pub
gym
bathroom
game
beach
hospital
doctor

store
grocery

Randomly sample
token from top k

highest probability
tokens in P(.)

(Holtzman et. al., ACL 2018; Fan et al., ACL 2018)

Issues with top-k sampling

Top-k can cut-off too quickly Top-k can cut-off too slowly

(Holtzman et. al., ICLR 2020)

I don’t know how many options I need: Top-p sampling

• Also known as nucleus sampling

• Sample from subset of vocabulary where probability mass is concentrated

P1(yt |{y}<t) P2(yt |{y}<t) P3(yt |{y}<t)

(Holtzman et. al., ICLR 2020)

P1(yt |{y}<t) P2(yt |{y}<t) P3(yt |{y}<t)

I don’t know how many options I need: Top-p sampling

• Also known as nucleus sampling:

• Sample from subset of vocabulary where probability mass is concentrated

• Probability mass has a dynamically changing nucleus

P*1 (yt |{y}<t) P*2 (yt |{y}<t) P*3 (yt |{y}<t)

(Holtzman et. al., ICLR 2020)*nuclei not to scale

P1(yt |{y}<t) P2(yt |{y}<t) P3(yt |{y}<t)

I don’t know how many options I need: Top-p sampling

• Also known as nucleus sampling:

• Sample from subset of vocabulary where probability mass is concentrated

• Probability mass has a dynamically changing nucleus

P*1 (yt |{y}<t) P*2 (yt |{y}<t) P*3 (yt |{y}<t)

(Holtzman et. al., ICLR 2020)*nuclei not to scale

Only sample from the
nucleus of the distribution

This all sounds a bit risky
• What if my sequence just isn’t very good?  

1. Make your word-level distributions more robust  
 

2. Optimize other sequence-level scores

Optimize other sequence-level scores: Re-ranking

• What if my sequence just isn’t very good?

• Sample a bunch of sequences

• Define a score to approximate the quality of your sequence.

• Simplest is to just use perplexity!

• What if my sequence just isn’t very good?

• Sample a bunch of sequences

• Define a score to approximate the quality of your sequence.

• Simplest is to just use perplexity!

• However, re-rankers can be used to score a variety of properties: style
(Holtzman et al., 2018), discourse (Gabriel et al., 2019), entailment/factuality
(Goyal et al., 2020), logical consistency (Lu et al., 2020), and many more…

Optimize other sequence-level scores: Re-ranking

• What if my sequence just isn’t very good?

• Sample a bunch of sequences

• Define a score to approximate the quality of your sequence.

• Simplest is to just use perplexity!

• However, re-rankers can be used to score a variety of properties: style
(Holtzman et al., 2018), discourse (Gabriel et al., 2019), entailment/factuality
(Goyal et al., 2020), logical consistency (Lu et al., 2020), and many more…

Optimize other sequence-level scores: Re-ranking

Change your distribution
at inference time!

kNN Language Models
• Don’t just rely on your trained model to generate a distribution over

tokens

• Use knowledge of similar contexts from another corpus

Obama was senator for
Barack is married to
Obama was born in

…
Obama is a native of

Training Contexts

Illinois
Michelle
Hawaii
…
Hawaii

Targets Representations

4
100
5
…
3

Distances

0.7
0.2
0.1

Nearest k

Hawaii
Illinois
Hawaii

Normalization

Hawaii
Illinois
Hawaii

3
4
5

0.8
0.2

Aggregation

Hawaii
Illinois

Obama’s birthplace is

Test Context

?

Target Representation
0.6
0.2
…

Interpolation

Hawaii
Illinois

…

0.2
0.2
…

Classification

Hawaii
Illinois

…

…

(Khandelwal et. al., ICLR 2020)

kNN Language Models
• Don’t just rely on your trained model to generate a distribution over

tokens

• Use knowledge of similar contexts from another corpus

Obama was senator for
Barack is married to
Obama was born in

…
Obama is a native of

Training Contexts

Illinois
Michelle
Hawaii
…
Hawaii

Targets Representations

4
100
5
…
3

Distances

0.7
0.2
0.1

Nearest k

Hawaii
Illinois
Hawaii

Normalization

Hawaii
Illinois
Hawaii

3
4
5

0.8
0.2

Aggregation

Hawaii
Illinois

Obama’s birthplace is

Test Context

?

Target Representation
0.6
0.2
…

Interpolation

Hawaii
Illinois

…

0.2
0.2
…

Classification

Hawaii
Illinois

…

…

(Khandelwal et. al., ICLR 2020)

Initialize a database of
contexts

kNN Language Models
• Don’t just rely on your trained model to generate a distribution over

tokens

• Use knowledge of similar contexts from another corpus

Obama was senator for
Barack is married to
Obama was born in

…
Obama is a native of

Training Contexts

Illinois
Michelle
Hawaii
…
Hawaii

Targets Representations

4
100
5
…
3

Distances

0.7
0.2
0.1

Nearest k

Hawaii
Illinois
Hawaii

Normalization

Hawaii
Illinois
Hawaii

3
4
5

0.8
0.2

Aggregation

Hawaii
Illinois

Obama’s birthplace is

Test Context

?

Target Representation
0.6
0.2
…

Interpolation

Hawaii
Illinois

…

0.2
0.2
…

Classification

Hawaii
Illinois

…

…

(Khandelwal et. al., ICLR 2020)

Efficiently compute distance between each
context in DB and current sequence

kNN Language Models
• Don’t just rely on your trained model to generate a distribution over

tokens

• Use knowledge of similar contexts from another corpus

Obama was senator for
Barack is married to
Obama was born in

…
Obama is a native of

Training Contexts

Illinois
Michelle
Hawaii
…
Hawaii

Targets Representations

4
100
5
…
3

Distances

0.7
0.2
0.1

Nearest k

Hawaii
Illinois
Hawaii

Normalization

Hawaii
Illinois
Hawaii

3
4
5

0.8
0.2

Aggregation

Hawaii
Illinois

Obama’s birthplace is

Test Context

?

Target Representation
0.6
0.2
…

Interpolation

Hawaii
Illinois

…

0.2
0.2
…

Classification

Hawaii
Illinois

…

…

(Khandelwal et. al., ICLR 2020)

Compute distribution over possible targets from
context DB sequences using distance of history

kNN Language Models
• Don’t just rely on your trained model to generate a distribution over

tokens

• Use knowledge of similar contexts from another corpus

Obama was senator for
Barack is married to
Obama was born in

…
Obama is a native of

Training Contexts

Illinois
Michelle
Hawaii
…
Hawaii

Targets Representations

4
100
5
…
3

Distances

0.7
0.2
0.1

Nearest k

Hawaii
Illinois
Hawaii

Normalization

Hawaii
Illinois
Hawaii

3
4
5

0.8
0.2

Aggregation

Hawaii
Illinois

Obama’s birthplace is

Test Context

?

Target Representation
0.6
0.2
…

Interpolation

Hawaii
Illinois

…

0.2
0.2
…

Classification

Hawaii
Illinois

…

…

(Gulcehre et al., 2015; Venugopalan et al., EMNLP 2016; Khandelwal et. al., ICLR 2020)

Interpolate distribution from nearest neighbor
search with model distribution

Plug and Play Language Models!
• What if I want to encourage a tough to formalize behavior at inference

time?

LM LM LM

Attribute Model p(a|x)

The chicken tastes

chicken tastes Grad

(Posit
ive

sentim
ent)

ok delicious

Original distribution
("ok")

Updated distribution
("delicious")

U
p
d
a
te

d
 L

a
te

n
ts

Backward Pass
and update latents

Forward Pass

Recompute with
updated latentsp(x)p(x)p(x)

Recompute

Step 1{
{
{

Step 2

Step 3

(Dathathri et al., ICLR 2020)

Plug and Play Language Models!
• What if I want to encourage a tough to formalize behavior at inference

time?

LM LM LM

Attribute Model p(a|x)

The chicken tastes

chicken tastes Grad

(Posit
ive

sentim
ent)

ok delicious

Original distribution
("ok")

Updated distribution
("delicious")

U
p
d
a
te

d
 L

a
te

n
ts

Backward Pass
and update latents

Forward Pass

Recompute with
updated latentsp(x)p(x)p(x)

Recompute

Step 1{
{
{

Step 2

Step 3

(Dathathri et al., ICLR 2020)

Define an attribute model that scores the generated
sequence. Each generated token must try to increase the

score given to the sequence by the attribute model

Plug and Play Language Models!
• What if I want to encourage a tough to formalize behavior at inference

time?

LM LM LM

Attribute Model p(a|x)

The chicken tastes

chicken tastes Grad

(Posit
ive

sentim
ent)

ok delicious

Original distribution
("ok")

Updated distribution
("delicious")

U
p
d
a
te

d
 L

a
te

n
ts

Backward Pass
and update latents

Forward Pass

Recompute with
updated latentsp(x)p(x)p(x)

Recompute

Step 1{
{
{

Step 2

Step 3

(Dathathri et al., ICLR 2020)

Backpropagate loss with respect to
attribute score

Plug and Play Language Models!
• What if I want to encourage a tough to formalize behavior at inference

time?

LM LM LM

Attribute Model p(a|x)

The chicken tastes

chicken tastes Grad

(Posit
ive

sentim
ent)

ok delicious

Original distribution
("ok")

Updated distribution
("delicious")

U
p
d
a
te

d
 L

a
te

n
ts

Backward Pass
and update latents

Forward Pass

Recompute with
updated latentsp(x)p(x)p(x)

Recompute

Step 1{
{
{

Step 2

Step 3

(Dathathri et al., ICLR 2020)

Update internal
activations of language

model based on  
 these gradients

Plug and Play Language Models!
• What if I want to encourage a tough to formalize behavior at inference

time?

LM LM LM

Attribute Model p(a|x)

The chicken tastes

chicken tastes Grad

(Posit
ive

sentim
ent)

ok delicious

Original distribution
("ok")

Updated distribution
("delicious")

U
p
d
a
te

d
 L

a
te

n
ts

Backward Pass
and update latents

Forward Pass

Recompute with
updated latentsp(x)p(x)p(x)

Recompute

Step 1{
{
{

Step 2

Step 3

(Dathathri et al., ICLR 2020)

Update distribution based
on new activations

Y

Ray hung a tire on a
rope to make his
daughter a swing.

Ray ran to his
daughter to make
sure she was okay.

x1 x2 xNX
…

X

Z

…

Ray ran [S]

…

Backpropagationỹb
1 ỹb

2 ỹb
N

ỹNỹ2ỹ1 …

…
ỹ f

1
ỹ f

2 ỹ f
N

Y Output: She hit the rope and the tire fell on top of her.

LM

…

L(X, Ỹ , Z) := −
∑NZ

n=1
logPLM(zn|X, Ỹ , Z1:n−1)

Future constraints described
by natural language

Inference time
optimization with
respect to future

constraints

ỹN Ray …ran okay

…to

(Qin et. al., EMNLP 2020)

DELO
REA

N

Takeaways

• Decoding is a challenging problem in natural language generation

• Human language distribution is noisy and doesn’t reflect simple properties
(i.e., maximization)

• Decoding algorithms can allow us to interject inductive biases that
encourage properties of coherent NLG

• A lot more work to be done!

Training Neural  
Text Generation Models

Antoine Bosselut

1. At each time step, model computes a score for each token in our
vocabulary,

2. Compute a probability distribution over these scores (usually softmax)

 

3. Define a loss function to select a token from this distribution

on
wn ∈ V

On = f({y}<t)

P(yt = wn |{y}<t) =
eon

∑M
m=1 eom

 is your modelf(.)

 is your distribution
over tokens

P(.)

Generation Model Basics

Allen

Text Generation Model

•Trained to generate the next word given a set of preceding words

y*0

Maximizing Likelihood

Allen

•Trained to generate the next word given a set of preceding words

y*0

sailed

y*1

Maximizing Likelihood

Text Generation Model

across

Allen sailed

•Trained to generate the next word given a set of preceding words

y*0 y*1

y*2
sailed

y*1

Maximizing Likelihood

Text Generation Model

sailed across oceans

Allen sailed across

•Trained to generate the next word given a set of preceding words

y*0 y*1 y*2

y*1 y*2 y*3

Maximizing Likelihood

Text Generation Model

sailed across oceans in

Allen sailed across oceans

•Trained to generate the next word given a set of preceding words

y*0 y*1 y*2 y*3

y*1 y*2 y*3 y*4

Maximizing Likelihood

Text Generation Model

sailed across oceans in …

Allen sailed across oceans …

•Trained to generate the next word given a set of preceding words

y*0 y*1 y*2 y*3

y*1 y*2 y*3 y*4

Maximizing Likelihood

Text Generation Model

sailed across oceans in bought…

HeAllen sailed across oceans …

•Trained to generate the next word given a set of preceding words

y*0 y*1 y*2 y*3 y*T−4

y*1 y*2 y*3 y*T−3y*4

Maximizing Likelihood

Text Generation Model

sailed across oceans in bought a…

boughtHeAllen sailed across oceans …

•Trained to generate the next word given a set of preceding words

y*0 y*1 y*2 y*3 y*T−4 y*T−3

y*1 y*2 y*3 y*T−3 y*T−2y*4

Maximizing Likelihood

Text Generation Model

boatsailed across oceans in bought a…

aboughtHeAllen sailed across oceans …

•Trained to generate the next word given a set of preceding words

y*0 y*1 y*2 y*3 y*T−4 y*T−3 y*T−2

y*1 y*2 y*3 y*T−3 y*T−2 y*T−1y*4

Maximizing Likelihood

Text Generation Model

<END>boatsailed across oceans in bought a…

boataboughtHeAllen sailed across oceans …

•Trained to generate the next word given a set of preceding words

y*0 y*1 y*2 y*3 y*T−4 y*T−3 y*T−2 y*T−1

y*1 y*2 y*3 y*T−3 y*T−2 y*T−1 y*Ty*4

Maximizing Likelihood

Text Generation Model

Text Generation Model

ℒ = −
T

∑
t=1

log P(y*t |{y*}<t)

y*0 y*1 y*2 y*3 y*T−4 y*T−3 y*T−2 y*T−1

y*1 y*2 y*3 y*T−3 y*T−2 y*T−1 y*Ty*4

•Trained to generate the next word given a set of preceding words

Maximizing Likelihood

The study, published in the Proceedings of the
National Academy of Sciences of the United States of
America (PNAS), was conducted by researchers from the
Universidad Nacional Autónoma de México (UNAM)
and the Universidad Nacional Autónoma de México
(UNAM/Universidad Nacional Autónoma de México/
Universidad Nacional Autónoma de México/
Universidad Nacional Autónoma de México/
Universidad Nacional Autónoma de México…

Context:

Continuation:

In a shocking finding, scientist discovered a herd
of unicorns living in a remote, previously
unexplored valley, in the Andes Mountains. Even
more surprising to the researchers was the fact
that the unicorns spoke perfect English.

Holtzman et. al., ICLR 2020

Issue #1: MLE discourages diversity

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

Pr
ob

ab
ili
ty

Timestep

Beam Search Text is Less Surprising

Beam Search
Human

Holtzman et. al., ICLR 2020

Issue #1: MLE discourages diversity

Alternatives: Unlikelihood Training
• Sequence-level Unlikelihood Training

• Given a set of undesired tokens , lower their likelihood in context𝒞

Welleck et. al., ICLR 2020

ℒt
UL = −

T

∑
yneg∈𝒞

log(1 − P(yneg |{y*}<t))ℒt
MLE = − log P(y*t |{y*}<t)

Alternatives: Unlikelihood Training
• Sequence-level Unlikelihood Training

• Given a set of undesired tokens , lower their likelihood in context𝒞

Welleck et. al., ICLR 2020

ℒt
UL = −

T

∑
yneg∈𝒞

log(1 − P(yneg |{y*}<t))ℒt
MLE = − log P(y*t |{y*}<t)

Typical Negative
Loglikehood objective

Alternatives: Unlikelihood Training
• Sequence-level Unlikelihood Training

• Given a set of undesired tokens , lower their likelihood in context𝒞

Welleck et. al., ICLR 2020

ℒt
UL = −

T

∑
yneg∈𝒞

log(1 − P(yneg |{y*}<t))ℒt
MLE = − log P(y*t |{y*}<t)

Typical Negative
Loglikehood objective

Unlikelihood objective
lowers the probability of

certain tokens

Alternatives: Unlikelihood Training
• Sequence-level Unlikelihood Training

• Given a set of undesired tokens , lower their likelihood in context𝒞

Welleck et. al., ICLR 2020

ℒt
UL = −

T

∑
yneg∈𝒞

log(1 − P(yneg |{y*}<t))ℒt
MLE = − log P(y*t |{y*}<t)

ℒt
ULE = ℒt

MLE + αℒt
UL

Combine them for full
unlikelihood training

Alternatives: Unlikelihood Training
• Sequence-level Unlikelihood Training

• Given a set of undesired tokens , lower their likelihood in context𝒞

Welleck et. al., ICLR 2020

ℒt
UL = −

T

∑
yneg∈𝒞

log(1 − P(yneg |{y*}<t))ℒt
MLE = − log P(y*t |{y*}<t)

But wait, what’s ?𝒞ℒt
ULE = ℒt

MLE + αℒt
UL

Alternatives: Unlikelihood Training
• Sequence-level Unlikelihood Training

• Given a set of undesired tokens , lower their likelihood in context𝒞

Welleck et. al., ICLR 2020

ℒt
UL = −

T

∑
yneg∈𝒞

log(1 − P(yneg |{y*}<t))ℒt
MLE = − log P(y*t |{y*}<t)

ℒt
ULE = ℒt

MLE + αℒt
UL 𝒞 = {y*}<t

Alternatives: F Softmax

• Avoid likelihood issues by
factorizing the softmax

• Initialize C frequency
classes

• Distribute vocabulary into
classes so that token
frequency uniformly
distributed across and
between classes

2

Choi et. al., EMNLP 2020

Alternatives: F Softmax

• Learn to select both frequency class
and vocabulary token during training

2

P(yt = wn |{y}<t) =
eUnh

∑M
m=1 eUmh

P(yt = wn |{y}<t) = (eVf h

∑C
c=1 eVch)(eUnh

∑Mf
m=1 eUmh)

Issue #2: Exposure Bias
• During training, we condition on gold context tokens that are real human-

generated text 
 
 

• During inference, we decode from distributions conditioned on previously
generated tokens

ℒMLE = − log P(y*t |{y*}<t)

ℒdec = − log P(̂yt |{ ̂y}<t)

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

Pr
ob

ab
ili
ty

Timestep

Beam Search Text is Less Surprising

Beam Search
Human

Holtzman et. al., ICLR 2020

Issue #2: Exposure Bias

Issue #2: Exposure Bias
• During training, we condition on gold context tokens that are real human-

generated text 
 
 

• During inference, we decode from distributions conditioned on previously
generated tokens

ℒMLE = − log P(y*t |{y*}<t)

ℒdec = − log P(̂yt |{ ̂y}<t)

Reinforcement Learning

• Cast a text generation model as a MDP

- State is denoted by a preceding context

- Actions are the words you can generate

- Policy is the text generation model

- Rewards are provided by an external source

Text Generation Model

y*0 y*1 y*2 y*3

̂yT−3 ̂yT−2 ̂yT−1 ̂yT

•Trained to generate the next word given a set of preceding words

REINFORCE

ℒRL = −
T

∑
t=T−3

r(̂yt)log P(̂yt |{ ̂y}<t; {y*})

̂yT−3 ̂yT−2 ̂yT−1START

Reward Estimation
• How do we define a reward function?

• BLEU (machine translation; Ranzato et al., ICLR 2016; Wu et al., 2016)

• ROUGE (summarization; Paulus et al., ICLR 2018; Celikyilmaz et al., NAACL 2018)

• CIDEr (image captioning; Rennie et al., CVPR 2017)

• SPIDEr (image captioning; Liu et al., ICCV 2017)

Reward Estimation
• How do we define a reward function?

• BLEU (machine translation; Ranzato et al., ICLR 2016; Wu et al., 2016)

• ROUGE (summarization; Paulus et al., ICLR 2018; Celikyilmaz et al., NAACL 2020)

• CIDEr (image captioning; Rennie et al., CVPR 2017)

• SPIDEr (image captioning; Liu et al., ICCV 2017)

Optimizing for the task vs. Gaming the reward

What behaviors can we tie to rewards?
• Cross-modal consistency (Ren et al., CVPR 2017)

• Simplicity (Zhang and Lapata, EMNLP 2017)

• Temporal consistency (Bosselut et al., NAACL 2018)

• Politeness (Tan et al., TACL 2018)

• Paraphrasing (Li et al., EMNLP 2018)

• Sentiment (Gong et al., NAACL 2019)

• Formality (Gong et al., NAACL 2019)

Implementation Thoughts

• Credit Assignment

• Set appropriate baseline

• Mix with MLE

ℒ = ℒMLE + αℒRL

ℒrl = − ∑ (r(̂yt) − b)log P(̂yt |{ ̂y}<t; {y*})

r(̂yt) r(̂Y)vs.

Implementation Thoughts

• Credit Assignment

• Set appropriate baseline

• Mix with MLE

ℒ = ℒMLE + αℒRL

ℒRL = − ∑ (r(̂yt) − b)log P(̂yt |{ ̂y}<t; {y*})

r(̂yt) r(̂Y)vs.

Implementation Thoughts

• Credit Assignment

• Set appropriate baseline

• Mix with MLE

ℒ = ℒMLE + αℒRL

ℒRL = − ∑ (r(̂yt) − b)log P(̂yt |{ ̂y}<t; {y*})

r(̂yt) r(̂Y)vs.

What if you don’t know what to use as reward?

• Adversarial Learning!

• Use an adversarially-learned scoring function to provide rewards

• Still often uses REINFORCE

• Dialogue systems (Li et al., EMNLP 2017), Visual storytelling (Wang et al.,
ACL 2018)

Human-in-the-loop Learning
1 Collect human feedback

“j is better than k” “j is better than k”

A Reddit post is
sampled from
the Reddit
TL;DR dataset.

Various policies
are used to
sample a set of
summaries.

Two summaries
are selected for
evaluation.

A human judges
which is a better
summary of the
post.

2 Train reward model

One post with
two summaries
judged by a
human are fed
to the reward
model.

The reward
model
calculates a
reward r for
each summary.

The loss is
calculated based
on the rewards
and human label,
and is used to
update the
reward model.

3 Train policy with PPO

A new post is
sampled from the
dataset.

The reward
model calculates
a reward for the
summary.

The reward is
used to update
the policy via
PPO.

r r

r

π

rj

loss = log(σ(rj - rk))

rk

The policy π
generates a
summary for the
post.

r

j

j

k

k

(Stiennon et al., NeurIPS 2020)

Takeaways
• Maximum likelihood estimation is still the premier algorithm for training text

generation models

• Diversity is an issue with MLE, so new approaches focus on mitigating the
effects of common words

• Exposure bias causes text generation models to lose coherence easily, so
learning from its own samples is a promising way forward

• Reinforcement learning allows models to learn tough to quantify behaviors

• Much more!

Decoding References
[1] Gulcehre et al., On Using Monolingual Corpora in Neural Machine Translation. arXiv 2015

[2] Wu et al., Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation. arxiv 2016

[3] Venugopalan et al., Improving LSTM-based Video Description with Linguistic Knowledge Mined from Text. EMNLP 2016

[4] Li et al., A Diversity-Promoting Objective Function for Neural Conversation Models. EMNLP 2018

[5] Paulus et al., A Deep Reinforced Model for Abstractive Summarization. ICLR 2018

[6] Celikyilmaz et al., Deep Communicating Agents for Abstractive Summarization. NAACL 2018

[7] Holtzman et al., Learning to Write with Cooperative Discriminators. ACL 2018

[8] Fan et al., Hierarchical Neural Story Generation. ACL 2018

[9] Gabriel et al., Cooperative Generator-Discriminator Networks for Abstractive Summarization with Narrative Flow. arXiv 2019

[10] Dathathri et al., Plug and Play Language Models: A Simple Approach to Controlled Text Generation. ICLR 2020

[11] Holtzman et al., The Curious Case of Neural Text Degeneration. ICLR 2020

[12] Khandelwal et al., Generalization through Memorization: Nearest Neighbor Language Models. ICLR 2020

[13] Qin et al., Back to the Future: Unsupervised Backprop-based Decoding for Counterfactual and Abductive Commonsense Reasoning.
EMNLP 2020

[14] Goyal and Durrett, Evaluating Factuality in Generation with Dependency-level Entailment. Findings of EMNLP 2020

[15] Lu et al., NeuroLogic Decoding: (Un)supervised Neural Text Generation with Predicate Logic Constraints. arXiv 2020

Training References
[1] Bengio et. al., Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks. NeurIPS 2015

[2] Ranzato et al., Sequence Level Training with Recurrent Neural Networks. ICLR 2016

[3] Wu et al., Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation. 2016

[4] Ren et al., Deep Reinforcement Learning-based Image Captioning with Embedding Reward. CVPR 2017

[5] Rennie et al., Self-critical Sequence Training for Image Captioning. CVPR 2017

[6] Liu et al., Improved Image Captioning via Policy Gradient Optimization of SPIDEr. ICCV 2017

[7] Zhang and Lapata, Sentence Simplification with Deep Reinforcement Learning. EMNLP 2017

[8] Li et al., Adversarial Learning for Neural Dialogue Generation. EMNLP 2017

[9] Paulus et al., A Deep Reinforced Model for Abstractive Summarization. ICLR 2018

[10] Celikyilmaz et al., Deep Communicating Agents for Abstractive Summarization. NAACL 2018

[11] Bosselut et al., Discourse-Aware Neural Rewards for Coherent Text Generation. NAACL 2018

[12] Wang et al., No Metrics Are Perfect: Adversarial Reward Learning for Visual Storytelling. ACL 2018

[13] Tan and Bansal, Polite Dialogue Generation Without Parallel Data. TACL 2018

[14] Li et al., Paraphrase Generation with Deep Reinforcement Learning. EMNLP 2018

[15] Gong et al., Reinforcement Learning Based Text Style Transfer without Parallel Training Corpus. NAACL 2019

[16] Holtzman et. al., The Curious Case of Neural Text Degeneration. ICLR 2020

[17] Welleck et. al., Neural Text Generation With Unlikelihood Training. ICLR 2020

[18] Stiennon et al., Learning to summarize from human feedback. NeurIPS 2020

