
The amazing world of Neural 
Language Generation

Challenges for deploying Natural Language 
Generation models in production



Challenges of deploying NLG models in production

Many different type of models have been developed over the long history of NLG. 
In this chapter we will focus on the production challenges associated to deploying the recent 
wave of models based on large-scale pretrained Transformer models.



Scope of this part

● What has already been covered in previous chapters:
○ Weaknesses and limits of languages models, in particular:

■ coherency, consistency, accuracy, repetitions, hallucinations, fairness, bias

We won’t focus on these topics again here

● What we will cover in this chapter
○ Practical considerations impeding easy deployment of LM-based NLG systems:

■ Speed, memory and energy consumption
■ Hands-on



The cost of deploying large-scale models

● Setting apart the cost of training, deploying a large-scale transformer in 
production can bear a significant cost

https://bdtechtalks.com/2020/09/21/gpt-3-economy-business-model/
https://twitter.com/matthausk/status/1301474259915755521

https://bdtechtalks.com/2020/09/21/gpt-3-economy-business-model/
https://twitter.com/matthausk/status/1301474259915755521


Strategies to optimize speed/memory/consumption

Various aspects can be investigated:

● High-level optimizations:
○ Efficient model architectures
○ Efficient decoding algorithms

● Implementation level optimizations
○ Framework for computation
○ Efficient model deployment

And the interactions between the above topics :)



High-level optimizations

More efficient model architectures:

● In pre-training optimizations
○ Controlling the number of parameters

Less heads and layers
○ More efficient computations

● Post pre-training optimizations
○ Distillation
○ Pruning

Images by Wannapik and Aneeque Ahmed 

https://www.wannapik.com
https://thenounproject.com/aneeque


High-level optimizations – During pre-training

Controlling the number of parameters:

● We can also prepare to reduce the number of layers
Reducing Transformer Depth on Demand with Structured 
Dropout
(Fan et al. 2019)

● Or heads
Voita et al. 2019,
Michel et al. 2019

https://arxiv.org/abs/1909.11556
https://arxiv.org/abs/1909.11556
https://arxiv.org/pdf/2010.10907.pdf
https://arxiv.org/pdf/1905.10650.pdf


High-level optimizations – During pre-training

Controlling memory/computation ratio: 
Encoder-decoder models
One Write-Head is All You Need
(Shazeer, 2019)

Notations: n=decoded seq, m=encoded seq, 
b=batch, k=keys dim, d=inner dim

https://arxiv.org/abs/1911.02150


High-level optimizations – During pre-training
Transformers are largely memory-bound

“Over a third (37%) of the runtime in a BERT training iteration is spent in memory-bound operators: While 
tensor contractions account for over 99% of the flop performed, they are only 61% of the runtime.”
Data Movement Is All You Need: A Case Study on Optimizing Transformers (Ivanov et al. 2020)

Controlling memory/computation trade-off: Encoder-decoder models

https://arxiv.org/pdf/2007.00072.pdf


High-level optimizations – During pre-training
More efficient computations: Fusing operations
https://microsoft.github.io/onnxruntime/docs/resources/graph-optimizations.html
https://www.deepspeed.ai/news/2020/05/27/fastest-bert-training.html

Transformer-based networks trigger many invocations of 
CUDA kernels adding a lot of cost for transferring data 
to/from global memory & overhead from kernel launching

https://microsoft.github.io/onnxruntime/docs/resources/graph-optimizations.html
https://www.deepspeed.ai/news/2020/05/27/fastest-bert-training.html


High-level optimizations
Multi-Query self-attention in the decoder
One Write-Head is All You Need (Shazeer, 2019)

https://arxiv.org/abs/1911.02150


High-level optimizations – During pre-training
Controlling the computational complexity:
● Efficient Transformers: A Survey (Tay et al. 2020)

https://arxiv.org/abs/2009.06732


High-level optimizations – During pre-training

● Invertible operations:
○ Softmax/LayerNorm are invertible:

backward pass is independent of the inputs
(Rota Bulò et al 2018)

● Gradient checkpointing
○ https://medium.com/tensorflow/fitting-larger-

networks-into-memory-583e3c758ff9

● Fully invertible networks
○ Reformer (Kitaev et al. 2020)

More efficient computations for pre-training:

https://arxiv.org/abs/1712.02616
https://medium.com/tensorflow/fitting-larger-networks-into-memory-583e3c758ff9
https://medium.com/tensorflow/fitting-larger-networks-into-memory-583e3c758ff9
https://arxiv.org/abs/2001.04451


High-level optimizations – During pre-training
Preparing for later-optimization:
● Quantization-pruning aware training

Training with Quantization Noise for Extreme Model 
Compression (Fan et al., 2020)

https://arxiv.org/abs/2004.07320
https://arxiv.org/abs/2004.07320


High-level optimizations – After training
● Two types of Transformers models are typically used in NLG 

○ Decoder only (GPT, CTRL, MegatronLM…)
○ Encoder-Decoder (BART, T5, Pegasus…)



High-level optimizations – After training

● Optimizing Encoders: 
○ Knowledge-Distillation
○ Quantization (FP16 or INT8)
○ Pruning

Young Jin Kim et al. 2020 – FastFormers: Highly Efficient Transformer Models for Natural Language Understanding

https://arxiv.org/abs/2010.13382


High-level optimizations – After training

● Optimizing Decoder: compressing through distillation
○ Shrink and Fine-Tune
○ Pseudo-labels
○ Knowledge Distillation

S Shleifer, A M. Rush 2020 – Pre-trained Summarization Distillation

https://arxiv.org/abs/2010.13002


High-level optimizations – Decoding

● Optimizing Decoding algorithm:
○ Caching

■ Caching encoder

■ Caching decoding
Transformer-XL
(Dai et al. 2019)

https://arxiv.org/pdf/1901.02860.pdf


High-level optimizations – Decoding
● Optimizing Decoding: Decoding algos



Implementation level optimizations – Decoding
● Optimizing Decoding:

○ Greedy-search - Sampling
■ Compile decoding loop

JAX, ONNX, TF

○ Beam-search
■ A Streaming Approach 

For Efficient Batched 
Beam Search (Yang et 
al. 2020)

https://arxiv.org/abs/2010.02164
https://arxiv.org/abs/2010.02164
https://arxiv.org/abs/2010.02164
https://arxiv.org/abs/2010.02164


Implementation level optimizations
● Low level optimizations: Controlling parallelism:

○ PyTorch/TensorFlow typically use all available CPU cores
○ Transformer ops not always big enough to fully utilize 

parallelism of many cores

○ Overheads of parallelizing
can overshadow actual gains

○ => Control level of parallelism

Young Jin Kim et al. 2020

https://arxiv.org/abs/2010.13382


Now a simple hands-on to finish the session :)

We will reproduce the results of “Leveraging Pre-trained Checkpoints for 
Sequence Generation Tasks” (TACL 2020) by Sascha Rothe, Shashi Narayan and 
Aliaksei Severyn from Google and use it in a simple API.

This paper aim to “provide an empirical answer to the following research question: 
what is the best way to leverage publicly available pre-trained checkpoints for 
warm-starting sequence generation models?”

E.g. using BERT checkpoint to initialize the encoder
for better input understanding and choosing GPT-2
model as the decoder for better text generation?

https://arxiv.org/pdf/1907.12461.pdf
https://arxiv.org/pdf/1907.12461.pdf


Now a simple hands-on to finish the session :)
This paper rigorously experiment with a large number of different settings to 
combine BERT, GPT and RoBERTa pre-trained checkpoints to initialize a 
Transformer-based model for:
● sentence-level fusion/splitting 
● machine translation
● abstractive summarization



Load the CNN/DailyMail dataset
● Companion Notebook by Patrick van Platen is here:

https://colab.research.google.com/drive/1WIk2bxglElfZewOHboPFNj8H44_VAyKE

https://twitter.com/PatrickPlaten
https://colab.research.google.com/drive/1WIk2bxglElfZewOHboPFNj8H44_VAyKE


Prepare the dataset (tokenize it)



Initialize an Encoder-Decoder model from Bert



Train the Encoder-Decoder model



Train the Encoder-Decoder model



Evaluate the Encoder-Decoder model



Hands-on: summarization with a pretrained 
Encoder-Decoder model
● Companion Notebook by Patrick van Platen is here:

https://colab.research.google.com/drive/1WIk2bxglElfZewOHboPFNj8
H44_VAyKE

● The model achieves a ROUGE-2 score of 18.22, which is even a little 
better than reported in the paper.

● The fully trained BERT2BERT model is uploaded to the HuggingFace 
model hub: patrickvonplaten/bert2bert_cnn_daily_mail. 

● For some summarization examples, the reader can use the online 
inference widget of the model here.

https://twitter.com/PatrickPlaten
https://colab.research.google.com/drive/1WIk2bxglElfZewOHboPFNj8H44_VAyKE
https://colab.research.google.com/drive/1WIk2bxglElfZewOHboPFNj8H44_VAyKE
https://huggingface.co/patrickvonplaten/bert2bert_cnn_daily_mail
https://huggingface.co/patrickvonplaten/bert2bert_cnn_daily_mail

