The amazing world of Neural
Language Generation

Challenges for deploying Natural Language
Generation models in production

Challenges of deploying NLG models in production

RNNs, LSTMs, ?
Template based Modeling Discourse GRUSs: ?.?' -?
systems: Structures : Autoregressive DNNs + w
Uses rules and Relation learning, Recurrent units,

templates Rhetorical Structure Theory backpropagation 22

ce

' 1978

== 1990 2017
1965 1985 { 2013
Rule-based + Data Statistical Methods .
Driven pipelines : (Markov Chains): Transformers :
D lanni ’ Sentence compression, GPT (1/2/3), GROVER.
SEHMENE EBDMEr: reordering, lexical TransformerXL, DialoGPT

microplanning + realization > .
paraphrasing, syntactic

transformation

0.0

Many different type of models have been developed over the long history of NLG.
In this chapter we will focus on the production challenges associated to deploying the recent
wave of models based on large-scale pretrained Transformer models.

Scope of this part

e \What has already been covered in previous chapters:

o Weaknesses and limits of languages models, in particular:
m coherency, consistency, accuracy, repetitions, hallucinations, fairness, bias

We won'’t focus on these topics again here

e \What we will cover in this chapter
o Practical considerations impeding easy deployment of LM-based NLG systems:
m Speed, memory and energy consumption
m Hands-on

The cost of deploying large-scale models

e Setting apart the cost of training, deploying a large-scale transformer in
production can bear a significant cost

Based on what we know, it would be safe to say the hardware costs of
running GPT-3 would be between $100,000 and $150,000 without factoring !’ g;‘;{‘;‘gjg‘k”"'““"'

in other costs (electricity, cooling, backup, etc.). Faseinating Insighitinto sty GET:3 essnenles

experiments. Not surprised about the relatively high

Alternatively, if run in the cloud, GPT-3 would require something like pricing. | was hearing that even in limited private Beta
Amazon’s p3dn.24xlarge instance, which comes packed with 8xTesla V100 they have monthly costs in significant 8 digits, despite
(32 GB), 768 GB RAM, and 96 CPU cores, and costs $10-30/hour depending MSFT Azure backing/discounts.

on your plan. That would put the yearly cost of running the model at a
minimum of $87,000.

https://bdtechtalks.com/2020/09/21/gpt-3-economy-business-model/
https://twitter.com/matthausk/status/1301474259915755521

https://bdtechtalks.com/2020/09/21/gpt-3-economy-business-model/
https://twitter.com/matthausk/status/1301474259915755521

Strategies to optimize speed/memory/consumption

Various aspects can be investigated:

e High-level optimizations:
o Efficient model architectures
o Efficient decoding algorithms

e |Implementation level optimizations
o Framework for computation
o Efficient model deployment

And the interactions between the above topics :)

High-level optimizations

More efficient model architectures:

e |n pre-training optimizations d.\
o Controlling the number of parameters {\Q{\{(‘\’,
Less heads and layers
o More efficient computations

e Post pre-training optimizations /‘T &
S s §>;,;{?”%
o Distillation 1 /M © /\

o Pruning

Images by Wannapik and Aneeque Ahmed

https://www.wannapik.com
https://thenounproject.com/aneeque

High-level optimizations — During pre-training

Controlling the number of parameters:

e \We can also prepare to reduce the number of layers
Reducing Transformer Depth on Demand with Structured

Dropout
= Pruned to 9 =
— runed to 9 ==
(Fan et al- 2019) % Train 9 Layer Model %
= & Pruned to 6 =
=] =
= = =
% Train 6 Layer Model Praned to 3 =— (J %
Or head —] =
® r ea S E Train 3 Layer Model
.) On Demand Train One
VO Ita et al . 20 1 9, TraII\IIZtiveorfll(r:te Depth Selection Full Network
TRAIN + TEST TIME Decreasing Model Size TESTTIME TRAIN TIME

Michel et al. 2019

https://arxiv.org/abs/1909.11556
https://arxiv.org/abs/1909.11556
https://arxiv.org/pdf/2010.10907.pdf
https://arxiv.org/pdf/1905.10650.pdf

In
e”“edugﬁé

High-level optimizations — DI =

Keys
Quersgg

valueS

Controlling memory/computation ratio:

Encoder-decoder models

One Write-Head is All You Need
(Shazeer, 2019)

Notations: n=decoded seq, m=encoded seq, ~
b=batch, k=keys dim, d=inner dim a F

The total number of arithmetic operations is ©(bnd?). (Since the complexity of each of the tf.einsum
operations above is O(bnd?) given the simplifying assumptions.

The total size of memory to be accessed is equal to the sum of the sizes of all the tensors involved:

O(bnd + bhn? + d?). The first term is due to X, M, @, K, V, O and Y, the second term due to the logits
and weights, and the third term due to the projection tensors Py, Py, P, and P,.
Dividing the two, we find that the ratio of memory access to arithmetic operations is O(%i#) This low

ratio is necessary for good performance on modern GPU/TPU hardware, where the computational capacity
can be two orders of magnitude higher than the memory bandwidth.

PELTARION

peltarion.com

https://arxiv.org/abs/1911.02150

High-level optimizations — During pre-training
Transformers are largely memory-bound
“Over a third (37%) of the runtime in a BERT training iteration is spent in memory-bound operators: While

tensor contractions account for over 99% of the flop performed, they are only 61% of the runtime.”
Data Movement Is All You Need: A Case Study on Optimizing Transformers (lvanov et al. 2020)

Controlling memory/computation trade-off: Encoder-decoder models

Across n calls, the total number of arithmetic operations is again ©(bnd?).

Across n calls, the total amount of memory access is ©(bn?d + nd?), the first term due to K and V and
the second term due to P,, Py, P, and P,.

Dividing the memory by the computations, we find that the ratio of memory access to arithmetic opera-
tions is ©(5 + %) When n =~ d or b = 1, the ratio is close to 1, causing memory bandwidth to be a major
performance bottleneck on modern computing hardware. In order to make incremental generation efficient,
we must reduce both of these terms to be < 1. The % term is the easier one - we can just use a larger batch
size, memory size permitting.

https://arxiv.org/pdf/2007.00072.pdf

High-level optimizations — During pre-training

More efficient computations: Fusing operations
https://microsoft.qithub.io/onnxruntime/docs/resources/graph-optimizations.html

https://www.deepspeed.ai/news/2020/05/27 /fastest-bert-training.html

Transformer-based networks trigger many invocations of
CUDA kernels adding a lot of cost for transferring data
to/from global memory & overhead from kernel launching

Norm —

- Query — Q-trans —> Attn

N
/r Score Max
> Key — Ktrans
Dropout 1

» Value —» V-trans

Soft

Attn
Context
v
Att .
D " <« Transform
[Dropout 2 Output
v
Norm
l Feed-Forward (FF)
Intermediate (

FF

—» GELU o“::"‘t -

Dropout 3

H

BxS| Q K

i

Figure 3: QKV's GEMM and transform Kernel-Fusion

B A

"

\
! . ' @
N
.S & B: batch size
h & : sequence len,
" 8| A~ A : hiddes
8 i heads
g s +head dis sion
x

Extended Graph Optimizations

These optimizations include complex node fusions. They are run after graph partitioning and are only
applied to the nodes assigned to the CPU or CUDA execution provider. Available extended graph
optimizations are as follows:

L N Execution
Optimization . Comment
Provider
GEMM Activation Fusion cpu
Matmul Add Fusion cpu
Conv Activation Fusion cpu

GELU Fusion cpu or cuda

Layer Normalization
. cpu or cuda
Fusion

BERT Embedding Layer Fuse BERT embedding layer, layer normalization and
N cpu or cuda

Fusion attention mask length

R N Attention mask has approximation in cuda execution
Attention Fusion cpu or cuda X
provider

Skip Layer Normalization Fuse bias of fully connected layer, skip connection and layer

cpu or cuda

Fusion. "~ " normal lization
Bias GELU Fusion cpu or cuda Fuse bias of fully connected layer and GELU activation
GELU Approximation cuda Erf is approximated by a formula using tanh function

https://microsoft.github.io/onnxruntime/docs/resources/graph-optimizations.html
https://www.deepspeed.ai/news/2020/05/27/fastest-bert-training.html

High-level optimizations

def MultiquerySelfAttentionIncremental(
x, prev_K, prev_V, P_q, P_k, P_v, P_o):
""" Multi—query Self—Attention (one step).
Args:

Multi-Query self-attention in the decoder e e e]
. . prev:V: tensor v.vith shape [b, m, v]
One Write-Head is All You Need (Shazeer, 2019) £ = tensor with share [, 4, &)
P_v: a tensor with shape [d, v]
Attention h di,d, dss | In(PPL) BLEU | BLEU (test) et RS ik AR08 1y s T
Type (dev) (dev) beam 1 / 4 y: a tensor with shape [b, d]
multi-head 8 128 4096 | 1.424 26.7 | 27.7/28.4 o s [[E il 5}
multi-query 8 128 5440 | 1.439 26.5 | 275/ 28.5 ol 4 LG
multi-head local 8 128 4096 1.427 26.6 27.5 /283 & ;fwinsunz("bd,hdk»bhk", x, P_q)
. = tf.concat
multl—query local 8 128 5440 1.437 26.5 27.6 / 28.2 [prev_K, tf.expand_ dims (tf.einsum("bd,dk—>bk"', M, P_k), axis=2)],
axis=2)
0 Cwers _ V = tf.concat(
Attention ﬂalnlng Inference Beam-4 Search [prev_V, tf.expand_ dims (tf.einsum("bd,dv—>bv"', M, P_v), axis=2)],
Type enc. + dec. enc. + dec. axis=2)
multi-head | 132 | L7+46 | 2.0+ 203 woights = t sofimax(logtte)
1- o = tf.einsum ("bhm,bmv—>bhv", weights, V|
I.nultl query 13.0 1.5 + 3.8 1.6 + 32 - tf.cinsumg"bhv,hdv—>bd", &)
multi-head local 13.2 1.7 + 23 1.9 + 47 return y, K, V
multi-query local 13.0 1.5 4+ 3.3 1.6 + 16

Dividing the memory by the computations, we find that the ratio of memory access to arithmetic opera-
tions is @(é +- o+ %) We have reduced the offensive % by a factor of h. Theoretically, given large batch
size b, this should dramatically improve performance of incremental generation. In our experimental section,
we will show that the performance gains are real and that model quality remains high.

https://arxiv.org/abs/1911.02150

High-level optimizations — During pre-training

Controlling the computational complexity:

e [Efficient Transformers: A Survey (Tay et al. 2020)

Model / Paper Complexity | Decode | Class
Memory Compressed’ (Liu et al., 2018) O(n?) v FP+M
Image Transformer! (Parmar et al., 2018) O(n.m) v FP
Set Transformer® (Lee et al., 2019) O(nk) X M
Transformer-XLf (Dai et al., 2019) O(n?) v RC
Sparse Transformer (Child et al., 2019) O(n+/n) v FP
Reformer! (Kitaev et al., 2020) O(nlogn) v LP
Routing Transformer (Roy et al., 2020) O(nlogn) v LP
Axial Transformer (Ho et al., 2019) O(n4/n) v FP
Compressive Transformer! (Rae et al., 2020) O(n?) v RC
Sinkhorn Transformer! (Tay et al., 2020b) o?) v LP
Longformer (Beltagy et al., 2020) O(n(k+m)) v FP+M
ETC (Ainslie et al., 2020) O(nZ + nny) X FP+M
Synthesizer (Tay et al., 2020a) O(n?) v LR+LP
Performer (Choromanski et al., 2020) O(n) v KR
Linformer (Wang et al., 2020Db) O(n) X LR
Linear Transformers! (Katharopoulos et al., 2020) O(n) v KR
Big Bird (Zaheer et al., 2020) O(n) X FP+M

Transformer-XL
(Dai et al., 2019)

R

Compressive

Transformer
(Rae etal., 2018)

urrence

Performer
(Choromanski et al,, 2020)

Set Transformer
(Leeetal, 2019)

LowRank/ _—

-

> Memory
Kernels ~

Compressed
(Liuetal, 2018)

Linformer
(Wang et al,, 2020b)

Longformer Routing
ETC (Beltagy et al., 2020) \Transformer
(Ainslie et al., 2020) (R oy etal., 2020)

/ Synthesizer

(Tay etal, 2020a)

Linear

Transformer /
(Katharopoulos et al., 2020) /

//

Big Bird \

(zaheer etal., 2020) \

[
[

Fixed/Factorized/
Random Patterns

Sinkhorn

Transformer
(Tay etal, 2020b)
Reformer

Blockwise Transformer / (Kitaev et al, 2020)

(iuetal,2019) v

Sparse Transformer
Image Transformer (Child etal, 2019)

(Parmar et al., 2018)

Axial Transformer
(Ho etal., 2019)

Figure 2: Taxonomy of Efficient Transformer Architectures.

https://arxiv.org/abs/2009.06732

High-level optimizations — During pre-training

More efficient computations for pre-training:

e Invertible operations:
o Softmax/LayerNorm are invertible:
backward pass is independent of the inputs
(Rota Buld et al 2018) (o o — —)
e Gradient checkpointing R [
o https://medium.com/tensorflow/fitting-larger-
networks-into-memory-583e3c758ff9 x B % ®— =
® G FJ
. . X2 —@— y2 22
e Fully invertible networks
x1 1 —Q——m— 21
O Reformer (Kitaev et al. 2020) o -
X2 -—@ y2

72

https://arxiv.org/abs/1712.02616
https://medium.com/tensorflow/fitting-larger-networks-into-memory-583e3c758ff9
https://medium.com/tensorflow/fitting-larger-networks-into-memory-583e3c758ff9
https://arxiv.org/abs/2001.04451

High-level optimizations — During pre-training

Language Modeling

Preparing for later-optimization: 24F XTTXE
e Quantization-pruning aware training

2 22 r OOurs+Share
B>
.. 2 O0urs XPers Mem.
Training with Quantization Noise for Extreme Model & 2} urp T
a €ns core
; X
Compression (Fan et al., 2020) 5k LayerDASpXTr XL
Ideal , Comp Trx
10 30 100 300 1000
26 - X w/o Quant-Noise X Training without Quant-Noise O Training with Quant-Noise Size (MB)
Training Time Quantization Training Time Quantization
:3%\ 24 - Weight Matrix Weight Matrix Weight Matrix Weight Matrix Language modeling
B 2} coee C Size PPL
&~ (O w/ Quant-Noise oeed 8 1z
l 20 o0ee : : Ungquantized models
Ideal Original Model A o0ee Original model x1 942 183
ol § 080 . . C) + Sharing x 1.8 510 18.7
1 1 I 00O ® ®: 00 + Pruning x 3.7 255 225
Size (MB) 10 100 1000 i
Quannzed models
Figure 1: Quant-Noise trains models to be resilient to inference-time quantization by mimicking the iPQ Noi X 33-2 gg ;gg
effect of the quantization method during training time. This allows for extreme compression rates N gﬁ;’;ﬁg olse Cdie 1o 94
without much loss in accuracy on a variety of tasks and benchmarks. + Pruning % 942 10 24.7

https://arxiv.org/abs/2004.07320
https://arxiv.org/abs/2004.07320

High-level optimizations — After training

e Two types of Transformers models are typically used in NLG
o Decoder only (GPT, CTRL, MegatronLM...)
o Encoder-Decoder (BART, T5, Pegasus...)

H I, I, 1 i
| T T T T B A t
IS e N f\ .
L u
N s N s 4 e : [e 2ok)\. (Decoder Block]
(GPT?2 Block)R VR VR W 5 f
i rr j i
T o o t Encoder Block
C GPT2 Block -~ -~ A [; \ [Decoder Block]
L e T E — . ?
[GPT2 Block) L, 0, v | [Encoder Block] [Decoder Block j
% o t ottt t
TS I R EEE t
) oy - v | | Ry, T X1 X2 X3 X4 e Xn

Yo y1 y2 y3 o Ym-1
A 4 A 4 A

High-level optimizations

— After training

1200
. . . .
e Optimizing Encoders:
o Knowledge-Distillation 2
Q
]
i 1 < 600
o Quantization (FP16 or INT8)
Q
=
. < 400
o Pruning
200
Optimization methods added Time (sec) Cumulative Speed-up Accuracy USD for
speed-up 100 M queries
Baseline (PyTorch out-of-the-box, 12L, 768) 734.35 1.00x - 74.01 $4,223
+ dynamic sequence length 209.29 3.51x 3.51% 74.01 $1,204
+ knowledge distillation (4L, 312) 22.5 32.64x 9.30x 74.04 $129
+ 8-bit quantization + graph optimization 9.97 73.66x 2.26x 73.43 $57
+ multi-instance inference 5.68 129.29x 1.76x 73.43 $33
+ structured pruning
25% heads and 25% hidden states pruned 4.11 178.67x 1.38x 73.36 $24
33Y% heads and 50% hidden states pruned 3.14 233.87x 1.81x 72.81 $18

Young Jin Kim et al. 2020 — FastFormers: Highly Efficient Transformer Models for Natural Language Understanding

74.01 74.01 74.04 73.43 72.81
73.43
73.36
1041.40
795.62
575.70
327.98
145.33
4.45 15.62 l
Baseline Dynamic Knowledge 8-bit Multi- Structured Structured
Out-of-the- sequence distillation quantization instance pruning pruning
box) length (4L,312) +graph inference (9h, 900) (8h, 600)
optimization

Figure 3: Accuracy versus queries per second with various optimizations on CPU.

76

74

Accuracy

https://arxiv.org/abs/2010.13382

High-level optimizations — After training

e Optimizing Decoder: compressing through distillation
O Shrink and Fine'TU ne Teacher Student MM Params Time (MS) Speedup Rouge-2 Rouge-L

BART 12-1 222 743 2.35 17.98 33.31

O Pseudo_|abels 123 ggg 1910759 1.93 2240 3730

6-6 1.48 21.17 36.21

o . 9-6 268 1184 1.47 2208 3724

12-6 306 1221 1.43 22.32 37.39

o Knowledge Distillation raine (2:12)_ 0
Pegasus 16-4 369 2038 2.40 23.18 38.13

16-8 435 2515 1.94 23.25 38.03

Teacher Size Data Teacher SFT KD Pseudo Baseline (16-16) 570 4890 24.46 39.15
Score Score Cost Score Cost Score Cost BertABS Baseline (6-6) 110 1120 16.50 31.27

BART 1 12-3 XSUM 22.29 21.08 2.5 21.63 6 21.38 15
Pegasus 16-4 XSUM 24.56 22.64 13 2192 22 2318 34 .) .
BART 126 CNN 21.06 21.21 2 2095 14 1993 195 Table 6: Best XSUM results across all methods. Each sub-table is sorted fastest to slowest by inference time.

Pegasus 16-4 CNN 21.37 21.29 31 - - 20.1 48 dBART-12-3 and dPegasus—-16-4 are trained on Pegasus pseudo-labels. dBART-12-6, dBART-6-6,
Marian 6-3 EN-RO 27.69 2591 4 2496 4 2685 28 and dBART-9-6 are trained with KD. dPegasus—-16-8 and dBART-12-1 are trained with SFT. For the
mBART 12-3 EN-RO 26457 256083 16 2587 24 2609 50 BART experiments where the encoder is smaller than 12 layers, we do not freeze it during training.

Table 5: Main results. Score is Rouge-2 for the 2 summarization datasets (first 4 rows), and BLEU for the
bottom two rows. Cost measures the GPU hours required to run the approach end to end, which, in the case of
Pseudo-labeling, requires running beam search on the full training set. The highest scoring distillation technique
is in bold.

S Shleifer, A M. Rush 2020 — Pre-trained Summarization Distillation

https://arxiv.org/abs/2010.13002

High-level optimizations — Decoding

I I I B .. Iz, t - 1(: ddddd | "
e Optimizing Decoding algorithm: 5 *)\k
] T ecoder ocC

o Caching N J
I (Encoder Block [Decoder Block]

m Caching encoder 1 ?
[Encoder Block J (Decoder Block)
R t o e e .

m Caching decoding

Transformer-XL (e ° o e o o 0 0 o % :
(Dai et al. 2019) %®O%
EO e o o o © © o o o o o

https://arxiv.org/pdf/1901.02860.pdf

High-level optimizations — Decoding

Top-K Sampling

e Optimizing Decoding: Decoding algos S

ZwEVmp.K P(w|“The”) = 0.68
D.’US

ang_—905 Beam search o
Greedy Search | s 0 s
. h 0.05 has
dog . dog 1
W 0.4 =5 woman .~ 0.4)
The nice house

5 The nice " house

03 o 03
N e DDD 000Doo
< < car 0.0+ man people big hou:
0.3 i 03 o -
/ /0 3 (w| “The”)
drives
g1 0.5 0.1 drives
turns 0.5 1.0~
turns
0

02 Zwewop,,, P(w|“The”) = 0.94 Zmevm,,,p P(w|“The”, “car”) = 0.97

— — = =y

0.5 0.5

04 Top-p (nucleus) sampling
Sampling ' 0.3
e (] H

nice dog car

_ drives is turns - 00 D D D D D D 0 D ______
e car

drlves car woman guy man people big hou: stops down a not the small told

(w|((The”) P(w|((The”7 Ltcar”)

s
0

Implementation level optimizations — Decoding

e Optimizing Decoding:
o Greedy-search - Sampling

m Compile decoding loop
JAX, ONNX, TF

o Beam-search

e

t= t=8
Yo *
=4 | 1=5
(}g O .
' 9§
=5

m A Streaming Approach
For Efficient Batched

O)

Beam Search (Yang et
al. 2020)

https://arxiv.org/abs/2010.02164
https://arxiv.org/abs/2010.02164
https://arxiv.org/abs/2010.02164
https://arxiv.org/abs/2010.02164

Implementation level optimizations

e Low level optimizations: Controlling parallelism:

o PyTorch/TensorFlow typically use all available CPU cores

O

Transformer ops not always big enough to fully utilize

p ara I I e I | sm Of man y cores Number of inference instances Time (sec)

Speed-up

Baseline (no thread control) 433 1.00x

L. 1 instance (20 threads/instance) 319 1.36x

Ove rheads Of pa ra”el|Z| ng 2 instances (10 threads/instance) 243 1.78x
4 instance (5 threads/instance) 247 1.75x

I 5 instance (4 threads/instance) 255 1.70x

can overs h a d Ow a Ctu a I g ains 10 instance (2 threads/instance) 300 1.44x
351 1.23x

=> Contr0| Ievel Of para”ellsm 20 instance (1 thread/instance)

Table 2: Speed comparison of different number of in-
Young Jin Kim et al. 2020 ference instances with thread control - time to perform

inference on 1,000 ReCoRD validation data samples.

https://arxiv.org/abs/2010.13382

Now a simple hands-on to finish the session :)

We will reproduce the results of “Leveraging Pre-trained Checkpoints for
Sequence Generation Tasks” (TACL 2020) by Sascha Rothe, Shashi Narayan and
Aliaksei Severyn from Google and use it in a simple API.

This paper aim to “provide an empirical answer to the following research question:
what is the best way to leverage publicly available pre-trained checkpoints for
warm-starting sequence generation models?”

L6 L.
- I < a I t t t t t
R SRR) o))) o

E.g. using BERT checkpoint to initialize the encoder . SN)\\ T

-

! t
: _ _ :
for better input understanding and choosing GPT-2 ¢ Eacoder Bl D\ R TS T
. t
model as the decoder for better text generation? (Bucoder Block (" Decoder Block

t i t t t]
X1 Xa X3 X4 A 2 = |] =

https://arxiv.org/pdf/1907.12461.pdf
https://arxiv.org/pdf/1907.12461.pdf

Now a simple hands-on to finish the session :)

This paper rigorously experiment with a large number of different settings to
combine BERT, GPT and RoBERTa pre-trained checkpoints to initialize a
Transformer-based model for:

sentence-level fusion/splitting
machine translation
abstractive summarization

| total embed. init. random

RND2RND 221M 23M 0 221M
BERT2RND 221M 23M 109M 112M
RND2BERT 221M 23M 109M 26M
BERT2BERT 221M 23M 195M 26M
BERTSHARE 136M 23M 109M 26M
ROBERTASHARE | 152M 39M 125M 26M
GPT 125M 39M 125M 0

RND2GPT 238M 39M 125M 114M
BERT2GPT 260M 62M 234M 26M
ROBERTA2GPT 276M 78M 250M 26M

Table 1: The number of total trainable parameters,
embedding parameters and parameters initialized from
the checkpoint vs. randomly. The BERT/GPT-2 em-
beddings have 23M/39M parameters. The encoder-
decoder attention accounts for 26M parameters.

Gigaword CNN/Dailymail BBC XSum
R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L
Lead - - - 39.60 17.70 36.20 16.30 1.61 11.95
PtGen - - - 39.53 17.28 36.38 29.70 9.21 23.24
ConvS2S 35.88 1748 33.29 - - - 31.89 11.54 25.75
MMN - - - - - - 32.00 12.10 26.00
Bottom-Up - - - 41.22 18.68 38.34 - - -
MASS 38.73 1971 35.96 - - - - - -
TransLM - - - 39.65 17.74 36.85 - - -
UniLM - - - 43.47 20.30 40.63 - - -
Initialized with the base checkpoint (12 layers)
RND2RND 36.94 1871 3445 35.77 14.00 32.96 30.90 10.23 24.24
BERT2RND 3771 19.26 35.26 38.74 17.76 35.95 38.42 15.83 30.80
RND2BERT 37.01 1891 34.51 36.65 15.55 33.97 32.44 11.52 25.65
BERT2BERT 38.01 19.68 35.58 39.02 17.84 36.29 37.53 15.24 30.05
BERTSHARE 38.13 19.81 35.62 39.09 18.10 36.33 38.52 16.12 31.13
ROBERTASHARE | 38.21 19.70 3544 40.10 18.95 37.39 39.87 17.50 32.37
GPT 36.04 1844 33.67 37.26 15.83 34.47 22.21 4.89 16.69
RND2GPT 36.21 1839 33.83 32.08 8.81 29.03 28.48 8.77 22.30
BERT2GPT 36.77 1823 34.24 25.20 4.96 22.99 27.79 8.37 21.91
ROBERTA2GPT 37.94 1921 3542 36.35 14.72 33.79 19.91 5.20 15.88
Initialized with the large checkpoint (24 layers)
BERTSHARE 38.35 19.80 35.66 39.83 17.69 37.01 38.93 16.35 31.52
ROBERTASHARE | 38.62 19.78 35.94 40.31 18.91 37.62 41.45 18.79 33.90

Load the CNN/DailyMail dataset

e Companion Notebook by Patrick van Platen is here:
https://colab.research.google.com/drive/1WIk2bxglEIfZewOHboPFNj8H44 VAYKE

° 'pip install datasets==1.0.2
import datasets

train_data = datasets.load_dataset("cnn_dailymail™, "3.0.0", split="train")

° from pprint import pprint
print(train_data.info.description)
pprint(train_data[@], width=1e3)

> CNN/DailyMail non-anonymized summarization dataset.

There are two features:
— article: text of news article, used as the document to be summarized

- highlights: joined text of highlights with <s> and </s> around each
highlight, which is the target summary

{'article': 'It\'s official: U.S. President Barack Obama wants lawmakers to weigh in on whether to use military force in Syria. Obama sent a 1
'because he wants to. "While I believe I have the authority to carry out this military action without specific congressional autho
'used —— and not by whom," U.N. spokesman Martin Nesirky told reporters on Saturday. But who used the weapons in the reported toxi
'evidence they collected. "It needs time to be able to analyze the information and the samples," Nesirky said. He noted that Ban hi
'would not be open-ended or include U.S. ground forces, he said. Syria\'s alleged use of chemical weapons earlier this month "is al
'before his Rose Garden speech. "The two leaders agreed that the international community must deliver a resolute message to the As
'Boehner, Majority Leader Eric Cantor, Majority Whip Kevin McCarthy and Conference Chair Cathy McMorris Rodgers issued a statement
'theory. "The main reason Obama is turning to the Congress: the military operation did not get enough support either in the world
'military levels. Syria\'s prime minister appeared unfazed by the saber-rattling. "The Syrian Army\'s status is on maximum readine
'that it used chemical weapons in the August 21 attack, saying that jihadists fighting with the rebels used them in an effort to ti
'highlights': 'Syrian official: Obama climbed to the top of the tree, "doesn\'t know how to get down"\nObama sends a letter to the heads of tl

'id': '0001dlafc246a7964130f43ae940af6bc6c57101" }

https://twitter.com/PatrickPlaten
https://colab.research.google.com/drive/1WIk2bxglElfZewOHboPFNj8H44_VAyKE

Prepare the dataset (tokenize it)

‘, from transformers import BertTokenizerFast
tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased")

set CLS and SEQ to BOS and EOS token because BERT does not have BOS and EOS by default
tokenizer.bos_token = tokenizer.cls_token
tokenizer.eos_token = tokenizer.sep_token

‘, batch_size=4 # change to 16 for full training
encoder_max_length=512
decoder_max_length=128

def prepare_data(batch):
tokenize the inputs and labels
inputs = tokenizer(batch["article"], padding="max_length", truncation=True, max_length=encoder_max_length)
outputs = tokenizer(batch["highlights"], padding="max_length", truncation=True, max_length=decoder_max_1length)
batch["input_ids"] = inputs.input_ids
batch["attention_mask"] = inputs.attention_mask
batch["decoder_input_ids"] = outputs.input_ids
batch["decoder_attention_mask"] = outputs.attention_mask
batch["labels"] = outputs.input_ids.copy()

because BERT automatically shifts the labels, the labels correspond exactly to ‘decoder_input_ids".

We have to make sure that the PAD token is ignored
batch["labels"] = [[-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"]]

return batch

train_data = train_data.map(prepare_data, batched=True, batch_size=batch_size, remove_columns=["article", "highlights", "id"])

train_data.set_format(type="torch")

Initialize an Encoder-Decoder model from Bert

[32] from transformers import EncoderDecoderModel

In contrast to other model classes in (@) Transformers, the EncoderDecoderModel class has two methods to load pre-trained weights, namely:

1. the "standard" .from_pretrained(...) method is derived from the general PretrainedModel. from_pretrained(...) method and thus
corresponds exactly to the the one of other model classes. The function expects a single model identifier, e.g.

.from_pretrained("google/bert2bert_L-24_wmt_de_en") and will load a single .pt checkpoint file into the EncoderDecoderModel
class.

2. aspecial .from_encoder_decoder_pretrained(...) method, which can be used to warm-start an encoder-decoder model from two
model identifiers - one for the encoder and one for the decoder. The first model identifier is thereby used to load the encoder, via
AutoModel. from_pretrained(...) (see doc here) and the second model identifier is used to load the decoder via
AutoModelForCausallM (see doc here.

Alright, let's warm-start our BERT2BERT model. As mentioned earlier we will warm-start both the encoder and decoder with the "bert-base-
cased" checkpoint.

° bert2bert = EncoderDecoderModel. from_encoder_decoder_pretrained("bert-base-uncased", "bert-base-uncased")

L Downloading: 100% [433/433 [00:02<00:00, 190B/s]
Downloading: 100% | 440M/440M [00:07<00:00, 60.5MB/s]

Some weights of the model checkpoint at bert-base-uncased were not used when initializing BertLMHeadModel: ['cls.seq relationship.weight', 'cls
- This IS expected if you are initializing BertLMHeadModel from the checkpoint of a model trained on another task or with another architecture
- This IS NOT expected if you are initializing BertLMHeadModel from the checkpoint of a model that you expect to be exactly identical (initial:
Some weights of BertLMHeadModel were not initialized from the model checkpoint at bert-base-uncased and are newly initialized:

['bert.encoder.:
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.

Train the Encoder-Decoder model

© # load rouge for validation
rouge = datasets.load_metric("rouge")

def compute_metrics(pred):
labels_ids = pred.label_ids
pred_ids = pred.predictions

all unnecessary tokens are removed

pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
labels_ids[labels_ids == -100] = tokenizer.pad_token_id

label_str = tokenizer.batch_decode(labels_ids, skip_special_tokens=True)

rouge_output = rouge.compute(predictions=pred_str, references=label_str, rouge_types=["rouge2"])["rouge2"].mid

return {
"rouge2_precision": round(rouge_output.precision, 4),
"rouge2_recall": round(rouge_output.recall, 4),
"rouge2_fmeasure": round(rouge_output.fmeasure, 4),

(, # set training arguments - these params are not really tuned, feel free to change
training_args = Seq2SeqTrainingArguments (

output_dir="./",
per_device_train_batch_size=batch_size,
per_device_eval_batch_size=batch_size,
predict_with_generate=True,
evaluate_during_training=True,
do_train=True,
do_eval=True,
logging_steps=2, # set to 1000 for full training
save_steps=16, # set to 500 for full training
eval_steps=4, # set to 8000 for full training
warmup_steps=1, # set to 2000 for full training
max_steps=16, # delete for full training
overwrite_output_dir=True,
save_total_limit=3,
fpl6=True,

Train the Encoder-Decoder model

Because we will use bert2bert for summarization, we set the model's special tokens and active beam_search with sensible parameters.

[1 # set special tokens
bert2bert.config.decoder_start_token_id = tokenizer.bos_token_id
bert2bert.config.eos_token_id = tokenizer.eos_token_id
bert2bert.config.pad_token_id = tokenizer.pad_token_id

sensible parameters for beam search

bert2bert.config.vocab_size = bert2bert.config.decoder.vocab_size
bert2bert.config.max_length = 142

bert2bert.config.min_length = 56
bert2bert.config.no_repeat_ngram_size = 3
bert2bert.config.early_stopping = True

bert2bert.config. length_penalty = 2.0

bert2bert.config.num_beams = 4

[1 # instantiate trainer

trainer = Seq2SeqTrainer(
model=bert2bert,
args=training_args,
compute_metrics=compute_metrics,
train_dataset=train_data,
eval_dataset=val_data,

)

trainer.train()

/usr/local/lib/python3.6/dist-packages/datasets/arrow_dataset.py:835: UserWarning: The given NumPy array is not writeable, and PyTorch does not
return torch.tensor(x, **format_kwargs)
/usr/local/lib/python3.6/dist-packages/torch/optim/lr_scheduler.py:123: UserWarning: Detected call of ~1lr_scheduler.step()~ before “optimizer.s

[16/16 08:29, Epoch 2/2]

Step Training Loss Validation Loss Rouge2 Precision Rouge2 Recall Rouge2 Fmeasure

4 10.000679 10.383123 0.000000 0.000000 0.000000
8 8.465530 8.130023 0.004300 0.004800 0.004500
12 7.704124 7.786637 0.005100 0.003900 0.004400
16 7.525826 7.755284 0.000000 0.000000 0.000000

TrainOutput(global_ step=16, training loss=8.653947830200195)

Evaluate the Encoder-Decoder model

© import datasets
from transformers import BertTokenizer, EncoderDecoderModel

tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
model = EncoderDecoderModel. from_pretrained("./checkpoint-16")
model.to("cuda")

test_data = datasets.load_dataset("cnn_dailymail"™, "3.0.0", split="test")

only use 16 training examples for notebook - DELETE LINE FOR FULL TRAINING
test_data = test_data.select(range(16))

batch_size = 16 # change to 64 for full evaluation
map data correctly
def generate_summary(batch):
Tokenizer will automatically set [BOS] <text> [EOS]
cut off at BERT max length 512
inputs = tokenizer(batch["article"], padding="max_length", truncation=True, max_length=512, return_tensors="pt")
input_ids = inputs.input_ids.to("cuda")
attention_mask = inputs.attention_mask.to("cuda")
outputs = model.generate(input_ids, attention_mask=attention_mask)

all special tokens including will be removed
output_str = tokenizer.batch_decode(outputs, skip_special_tokens=True)

batch["pred"] = output_str
return batch

results = test_data.map(generate_summary, batched=True, batch_size=batch_size, remove_columns=["article"])

toors I /1 01/56<0000, 116 48]

Hands-on: summarization with a pretrained
Encoder-Decoder model

e Companion Notebook by Patrick van Platen is here:
https://colab.research.google.com/drive/1WIk2bxglEIfZewOHboPFN;|8
H44 VAYKE

e The model achieves a ROUGE-2 score of 18.22, which is even a little
better than reported in the paper.

e The fully trained BERT2BERT model is uploaded to the HuggingFace
model hub: patrickvonplaten/bert2bert_cnn_daily _mail.

e For some summarization examples, the reader can use the online
inference widget of the model here.

https://twitter.com/PatrickPlaten
https://colab.research.google.com/drive/1WIk2bxglElfZewOHboPFNj8H44_VAyKE
https://colab.research.google.com/drive/1WIk2bxglElfZewOHboPFNj8H44_VAyKE
https://huggingface.co/patrickvonplaten/bert2bert_cnn_daily_mail
https://huggingface.co/patrickvonplaten/bert2bert_cnn_daily_mail

